Skip to main content
Log in

A special configuration of 12 conics and generalized Kummer surfaces

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

A generalized Kummer surface X obtained as the quotient of an abelian surface by a symplectic automorphism of order 3 contains a \(9\mathbf{A}_{2}\)-configuration of \((-2)\)-curves. Such a configuration plays the role of the \(16\mathbf{A}_{1}\)-configurations for usual Kummer surfaces. In this paper we construct 9 other such \(9\mathbf{A}_{2}\)-configurations on the generalized Kummer surface associated to the double cover of the plane branched over the sextic dual curve of a cubic curve. The new \(9\mathbf{A}_{2}\)-configurations are obtained by taking the pullback of a certain configuration of 12 conics which are in special position with respect to the branch curve, plus some singular quartic curves. We then construct some automorphisms of the K3 surface sending one configuration to another. We also give various models of X and of the generic fiber of its natural elliptic pencil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. Ens. Math. (2) 55(3–4), 235–273 (2009)

    Article  MathSciNet  Google Scholar 

  2. Beauville A.: Complex Algebraic Surfaces, 2nd edn. Lond. Math. Soc., vol. 34. Cambridge University Press, x+132 pp (1996)

  3. Bertin, J.: Réseaux de Kummer et surfaces K3. Invent. Math. 93(2), 267–284 (1988)

    Article  MathSciNet  Google Scholar 

  4. Barth, W.: K3 surfaces with nine cusps. Geom. Dedicata 72(2), 171–178 (1998)

    Article  MathSciNet  Google Scholar 

  5. Barth W.: On the classification of K3 surfaces with nine cusps. In: Complex Analysis and Algebraic Geometry, pp. 41–59. de Gruyter, Berlin. MR 1760871 (2000)

  6. Barth, W., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces. Sd ed. Erg Math Grenz. 3. Folge., vol. 4, xii+436 pp. Springer, Berlin (2004)

  7. Birkenhake, C., Lange, H.: A family of Abelian surfaces and curves of genus four. Manus. Math. 85, 393–407 (1994)

    Article  MathSciNet  Google Scholar 

  8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language, computational algebra and number theory (London, 1993). J. Symb. Comput. 24(3–4), 235–265 (1997)

    Article  Google Scholar 

  9. Conway, J.H., Sloane, N.J.A.: Sphere packings, lattices and groups, Sde. ed., Grund. der Math. Wiss, vol. 290, xliv+679 pp. Springer, New York (1993)

  10. Degtyarev, A.: Oka’s conjecture on irreducible plane sextics. J. Lond. Math. Soc. (2) 78(2), 329–351 (2008)

  11. Dolgachev, I.: Abstract configurations in algebraic geometry. In: The Fano Conference, pp. 423–462. Univ. Torino, Turin (2004)

  12. Dolgachev, I., Laface, A., Persson, U., Urzúa, G.: Chilean configuration of conics, lines and points (preprint)

  13. Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)

    MATH  Google Scholar 

  14. Gritsenko, V., Hulek, K.: Minimal Siegel modular threefolds. Math. Proc. Camb. Philos. Soc. 123, 461–485 (1998)

    Article  MathSciNet  Google Scholar 

  15. Huybrecht, D.: Lectures on K3 Surfaces. Camb. Stud. Adv. Math, vol. 158. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  16. Miranda, R.: The Basic Theory of Elliptic Surfaces. Dottorato di Ricerca in Matematica, ETS Editrice, Pisa, vi+108 pp (1989)

  17. Morrison, D.R.: On K3 surfaces with large Picard number. Invent. Math. 75(1), 105–121 (1984)

    Article  MathSciNet  Google Scholar 

  18. Nikulin, V.V., Kummer, On., surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 39: 278–293. English translation: Math. USSR. Izv 9(1975), 261–275 (1975)

  19. Nikulin, V.V.: Integer symmetric bilinear forms and some of their geometric applications. Izv. Akad. Nauk SSSR Ser. Mat. 43(1), 111–177 (1979)

    MathSciNet  MATH  Google Scholar 

  20. Pokora, P., Szemberg, T.: Conic-line arrangements in the complex projective plane. arXiv:2002.01760

  21. Roulleau X.: On the geometry of K3 surfaces with finite automorphism group: the compact case (preprint). arXiv:1909.01909

  22. Roulleau, X., Sarti, A.: Construction of Nikulin configurations on some Kummer surfaces and applications. Math. Ann. 373(11), 7651–7668 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Roulleau, X., Sarti, A.: Explicit Nikulin configurations on Kummer surfaces (preprint). arXiv:1907.12215

  24. Sarti, A.: Transcendental lattices of some K3-surfaces. Math. Nachr. 281(7), 1031–1046 (2008)

    Article  MathSciNet  Google Scholar 

  25. Saint, Donat B.: Projective models of K-3 surfaces. Am. J. Math. 96, 602–639 (1974)

    Article  MathSciNet  Google Scholar 

  26. Schütt, M., Shioda, T.: Mordell-Weil lattices, Erg. der Math. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 70. Springer, xvi+431 pp (2019)

  27. Silverman, J.: Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151. Springer, New York (1994)

    Book  Google Scholar 

  28. Shimada, I.: On elliptic K3 surfaces. Mich. Math. J. 47(3), 423–446 (2000)

    Article  MathSciNet  Google Scholar 

  29. Shimada, I.: On elliptic K3 surfaces. arXiv:math/0505140

  30. Shioda, T.: On elliptic modular surfaces. J. Math. Soc. Japan 24, 20–59 (1972)

    Article  MathSciNet  Google Scholar 

  31. Shioda, T.: Some remarks on abelian varieties. J. Fac. Sci. Univ. Tokyo Sect. IA 24, 11–21 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Carlos Rito for sharing his program LinSys, Remke Kloosterman for pointing out the reference [10], and also Cédric Bonnafé, Igor Dolgachev, Antonio Laface, Ulf Persson, Piotr Pokora, Giancarlo Urzúa. Part of the computations were done using Magma software [8]. The second author thanks the Max-Planck Institute for Mathematics of Bonn for its hospitality and support. The third author is partially supported by the ANR project No. ANR-20-CE40-0026-01 (SMAGP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Roulleau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let \(D_{2}\) be the pull-back of a line by the double cover map \(\eta :X_{\lambda }\rightarrow \mathbb {P}^{1}\). Let us define the following classes in the \(\mathbb {Q}\)-basis \(\mathcal {B}_{0}=(D_{2},A_{1},A_{1}',\dots ,A_{9},A_{9}')\):

$$\begin{aligned} B_{1}=2D_{2}-\tfrac{1}{3}\left( {\textstyle \sum _{j=1}^{9}}2A_{j}+A_{j}'\right) ,\,\,B_{2}=2D_{2}-\tfrac{1}{3}\left( {\textstyle \sum _{j=1}^{9}}A_{j}+2A_{j}'\right) . \end{aligned}$$

We remark that \(B_{1}^{2}=B_{2}^{2}=2\), \(B_{1}B_{2}=5\) and \(B_{1}+B_{2}=D_{14}\). We have \(D_{14}A_{j}=D_{14}A_{j}'=1\), therefore \(B_{i}A_{j}\in \{0,1\}\), \(B_{i}A_{j}'\in \{0,1\}\). Using algorithms described in [21], we find that for \(j\in \{1,\dots ,9\}\), the classes of the curves \(\gamma _{j},\gamma _{j}'\) above the quartic \(Q_{j}\) are

$$\begin{aligned} \gamma _{j}=B_{1}-\left( A_{j}+A_{j}'\right) ,\,\gamma _{j}'=B_{2}-\left( A_{j}+A_{j}'\right) . \end{aligned}$$

It is easy to check that \(\gamma _{j}^{2}=\gamma _{j}'^{2}=-2\), \(\gamma _{j}\gamma _{j}'=1\), and for \(1\le i\ne j\le 9\), we have \(\gamma _{i}\gamma _{j}=\gamma _{i}'\gamma _{j}'=0\) and \(\gamma _{i}\gamma _{j}'=3\). In fact, using that the image in \(\mathbb {P}^{2}\) of \(\gamma _{j},\gamma _{j}'\) is a quartic curve that goes through the points in \(\mathcal {P}_{9}\) with a multiplicity 3 at \(p_{j}\), one gets

$$\begin{aligned} 4D_{2}\equiv \gamma _{j}+\gamma _{j}'+2\left( A_{j}+A_{j}'\right) +{\textstyle \sum _{j=1}^{9}}\left( A_{j}+A_{j}'\right) . \end{aligned}$$

The classes in the \(\mathbb {Q}\)-basis \(\mathcal {B}_{0}=(L,A_{1},A_{1}',\dots ,A_{9},A_{9}')\) of the 24 \(\mathrm{(-2)}\)-curves \(\theta _{i,\dots ,n},\theta '_{i,\dots ,n}\) above the 12 conics \(C_{i,\dots ,n}\) in \(\mathcal {C}_{12}\) are

$$\begin{aligned}&\theta _{123456}=\frac{1}{3}(3,-2,-1,-2,-1,-2,-1,-1,-2,-1,-2,-1,-2,0,0,0,0,0,0),\\&\theta '_{123456}=\frac{1}{3}(3,-1,-2,-1,-2,-1,-2,-2,-1,-2,-1,-2,-1,0,0,0,0,0,0),\\&\theta _{123789}=\frac{1}{3}(3,-2,-1,-2,-1,-2,-1,0,0,0,0,0,0,-1,-2,-1,-2,-1,-2),\\&\theta '_{123789}=\frac{1}{3}(3,-1,-2,-1,-2,-1,-2,0,0,0,0,0,0,-2,-1,-2,-1,-2,-1),\\&\theta _{124578}=\frac{1}{3}(3,-2,-1,-1,-2,0,0,-2,-1,-1,-2,0,0,-2,-1,-1,-2,0,0),\\&\theta '_{124578}=\frac{1}{3}(3,-1,-2,-2,-1,0,0,-1,-2,-2,-1,0,0,-1,-2,-2,-1,0,0),\\&\theta _{124689}=\frac{1}{3}(3,-2,-1,-1,-2,0,0,-1,-2,0,0,-2,-1,0,0,-2,-1,-1,-2),\\&\theta '_{124689}=\frac{1}{3}(3,-1,-2,-2,-1,0,0,-2,-1,0,0,-1,-2,0,0,-1,-2,-2,-1),\\&\theta _{125679}=\frac{1}{3}(3,-2,-1,-1,-2,0,0,0,0,-2,-1,-1,-2,-1,-2,0,0,-2,-1),\\&\theta '_{125679}=\frac{1}{3}(3,-1,-2,-2,-1,0,0,0,0,-1,-2,-2,-1,-2,-1,0,0,-1,-2),\\&\theta _{134589}=\frac{1}{3}(3,-2,-1,0,0,-1,-2,-1,-2,-2,-1,0,0,0,0,-1,-2,-2,-1),\\&\theta '_{134589}=\frac{1}{3}(3,-1,-2,0,0,-2,-1,-2,-1,-1,-2,0,0,0,0,-2,-1,-1,-2),\\&\theta _{134679}=\frac{1}{3}(3,-2,-1,0,0,-1,-2,-2,-1,0,0,-1,-2,-2,-1,0,0,-1,-2),\\&\theta '_{134679}=\frac{1}{3}(3,-1,-2,0,0,-2,-1,-1,-2,0,0,-2,-1,-1,-2,0,0,-2,-1),\\&\theta _{135678}=\frac{1}{3}(3,-2,-1,0,0,-1,-2,0,0,-1,-2,-2,-1,-1,-2,-2,-1,0,0),\\&\theta '_{135678}=\frac{1}{3}(3,-1,-2,0,0,-2,-1,0,0,-2,-1,-1,-2,-2,-1,-1,-2,0,0),\\&\theta {}_{234579}=\frac{1}{3}(3,0,0,-2,-1,-1,-2,-2,-1,-1,-2,0,0,-1,-2,0,0,-2,-1),\\&\theta '_{234579}=\frac{1}{3}(3,0,0,-1,-2,-2,-1,-1,-2,-2,-1,0,0,-2,-1,0,0,-1,-2),\\&\theta {}_{234678}=\frac{1}{3}(3,0,0,-2,-1,-1,-2,-1,-2,0,0,-2,-1,-2,-1,-1,-2,0,0),\\&\theta '_{234678}=\frac{1}{3}(3,0,0,-1,-2,-2,-1,-2,-1,0,0,-1,-2,-1,-2,-2,-1,0,0),\\&\theta {}_{235689}=\frac{1}{3}(3,0,0,-2,-1,-1,-2,0,0,-2,-1,-1,-2,0,0,-2,-1,-1,-2),\\&\theta '_{235689}=\frac{1}{3}(3,0,0,-1,-2,-2,-1,0,0,-1,-2,-2,-1,0,0,-1,-2,-2,-1),\\&\theta _{456789}=\frac{1}{3}(3,0,0,0,0,0,0,-1,-2,-1,-2,-1,-2,-2,-1,-2,-1,-2,-1),\\&\theta '_{456789}=\frac{1}{3}(3,0,0,0,0,0,0,-2,-1,-2,-1,-2,-1,-1,-2,-1,-2,-1,-2). \end{aligned}$$

We also denote by \(\varTheta _{j},\,j=1,\dots ,24\) these curves in the order of the above list.

For \(k=1,\ldots ,9\), the quartic curves \(Q_{k}\) through \(\mathcal {P}_{9}\) that have a multiplicity 3 singular point at \(p_{k}\) are:

$$\begin{aligned}&Q_{1}:\,\,x^{4}-2\lambda x^{3}y\!+\!3\lambda ^{2}x^{2}y^{2}\!-\!(\lambda ^{3}+1)xy^{3}\!+\!\lambda y^{4}-2\lambda x^{3}z+(-\lambda ^{3}+1)xy^{2}z-2\lambda y^{3}z\\&\quad +\,3\lambda ^{2}x^{2}z^{2}+(-\lambda ^{3}+1)xyz^{2}+(\lambda ^{4}+2\lambda )y^{2}z^{2}-(\lambda ^{3}+1)xz^{3}-2\lambda yz^{3}+\lambda z^{4}=0,\\&Q_{2}:\,\,x^{4}\!-\!(\lambda ^{3}\!+\!1)/\lambda x^{3}y\!+\!3\lambda x^{2}y^{2}\!-\!2xy^{3}\!+\!1/\lambda y^{4}\!-\!2x^{3}z\!+\!(-\lambda ^{3}+1)/\lambda x^{2}yz-2y^{3}z\\&\quad +\,(\lambda ^{3}+2)x^{2}z^{2}+(1-\lambda ^{3})/\lambda xyz^{2}+3\lambda y^{2}z^{2}-2xz^{3}-(\lambda ^{3}+1)/\lambda yz^{3}+z^{4}=0,\\&Q_{3}:\,\,x^{4}-2x^{3}y+(\lambda ^{3}+2)x^{2}y^{2}-2xy^{3}+y^{4}-(\lambda ^{3}+1)/\lambda x^{3}z+(1-\lambda ^{3})/\lambda x^{2}yz\\&\quad +\,(1-\lambda ^{3})/\lambda xy^{2}z-(\lambda ^{3}+1)/\lambda y^{3}z+3\lambda x^{2}z^{2}+3\lambda y^{2}z^{2}\!-\!2xz^{3}-2yz^{3}+1/\lambda z^{4}\!=\!0,\\&Q_{4}:\,\,x^{4}+(2\omega +2)\lambda x^{3}y+3\omega \lambda ^{2}x^{2}y^{2}-(\lambda ^{3}+1)xy^{3}-(\omega +1)\lambda y^{4}-2\omega \lambda x^{3}z\\&\quad -\,(\omega ^{2}\lambda ^{3}+\omega +1)xy^{2}z-2\omega \lambda y^{3}z-(3\omega +3)\lambda ^{2}x^{2}z^{2}+(\omega -\omega \lambda ^{3})xyz^{2}\\&\quad +\,(\lambda ^{4}+2\lambda )y^{2}z^{2}-(\lambda ^{3}+1)xz^{3}+(2\omega +2)\lambda yz^{3}+\omega \lambda z^{4}=0,\\&Q_{5}:\,\,x^{4}-(\omega ^{2}\lambda ^{3}+\omega ^{2})/\lambda x^{3}y+3\omega \lambda x^{2}y^{2}-2xy^{3}-(\omega +1)/\lambda y^{4}-2\omega x^{3}z\\&\quad +\,(1-\lambda ^{3})/\lambda x^{2}yz-2\omega y^{3}z-((\omega +1)\lambda ^{3}+2\omega +2)x^{2}z^{2}+(\omega -\omega \lambda ^{3})/\lambda xyz^{2}\\&\quad +\,3\lambda y^{2}z^{2}-2xz^{3}-\omega ^{2}(\lambda ^{3}+1)/\lambda yz^{3}+\omega z^{4}=0,\\&Q_{6}:\,\,x^{4}+(2\omega +2)x^{3}y+(\omega \lambda ^{3}+2\omega )x^{2}y^{2}-2xy^{3}+\omega ^{2}y^{4}-(\omega \lambda ^{3}+\omega )/\lambda x^{3}z\\&\quad +\,\,(1-\lambda ^{3})/\lambda x^{2}yz-(\omega ^{2}\lambda ^{3}-\omega ^{2})/\lambda xy^{2}z-(\omega \lambda ^{3}+\omega )/\lambda y^{3}z\\&\quad -\,(3\omega +3)\lambda x^{2}z^{2}+3\lambda y^{2}z^{2}-2xz^{3}+(2\omega +2)yz^{3}+\omega /\lambda z^{4}=0,\\&Q_{7}:\,\,x^{4}-2\omega \lambda x^{3}y-(3\omega +3)\lambda ^{2}x^{2}y^{2}-(\lambda ^{3}+1)xy^{3}+\omega \lambda y^{4}+(2\omega +2)\lambda x^{3}z\\&\quad +\,(\omega -\omega \lambda ^{3})xy^{2}z+(2\omega +2)\lambda y^{3}z+3\omega \lambda ^{2}x^{2}z^{2}-(\omega ^{2}\lambda ^{3}-\omega ^{2})xyz^{2}\\&\quad +\,(\lambda ^{4}+2\lambda )y^{2}z^{2}-(\lambda ^{3}+1)xz^{3}-2\omega \lambda yz^{3}+\omega ^{2}\lambda z^{4}=0,\\&Q_{8}:\,\,x^{4}-(\omega \lambda ^{3}+\omega )/\lambda x^{3}y-(3\omega +3)\lambda x^{2}y^{2}-2xy^{3}+\omega /\lambda y^{4}+(2\omega +2)x^{3}z\\&\quad +\,(1-\lambda ^{3})/\lambda x^{2}yz+(2\omega +2)y^{3}z+(\omega \lambda ^{3}+2\omega )x^{2}z^{2}-(\omega ^{2}\lambda ^{3}-\omega ^{2})/\lambda xyz^{2}\\&\quad +\,3\lambda y^{2}z^{2}-2xz^{3}-(\omega \lambda ^{3}+\omega )/\lambda yz^{3}+\omega ^{2}z^{4}=0,\\&Q_{9}:\,\,x^{4}-2\omega x^{3}y+(\omega ^{2}\lambda ^{3}-2\omega -2)x^{2}y^{2}-2xy^{3}+\omega y^{4}-(\omega ^{2}\lambda ^{3}+\omega ^{2})/\lambda x^{3}z\\&\quad +\,(1-\lambda ^{3})/\lambda x^{2}yz+(-\omega \lambda ^{3}+\omega )/\lambda xy^{2}z-(\omega ^{2}\lambda ^{3}+\omega ^{2})/\lambda y^{3}z\\&\quad +\,3\omega \lambda x^{2}z^{2}+3\lambda y^{2}z^{2}-2xz^{3}-2\omega yz^{3}+\omega ^{2}/\lambda z^{4}=0, \end{aligned}$$

where \(\omega ^{2}+\omega +1=0\).

The matrices in basis \(\mathcal {B}\) of the generators of the group \(G_{432}\simeq AGL_{2}(\mathbb {F}_{3})\) preserving the natural \(9\mathbf{A}_{2}\)-configuration \(A_{1},A_{1}',\dots ,A_{9},A_{9}'\) are

$$\begin{aligned}&{g_{1}=\left( \begin{array}{ccccccccccccccccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 2 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} -1 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 4 &{} -2 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} -1 &{} -1 &{} 2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1 &{} -1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} -1 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 &{} 2 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} 0 &{} 1 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} -1 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -2 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} -1 &{} -1 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -3 &{} 2 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} 1 &{} -2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 &{} 1 &{} -1 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} -2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} -1 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 3 &{} -3 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} -1 &{} -1 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -4 &{} 2 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} 1 &{} -2 &{} 1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} -1 &{} 0 &{} 1 &{} 0 \end{array}\right) , }\\&{g_{2}=\left( \begin{array}{ccccccccccccccccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 2 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0\\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 4 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -4 &{} 0 &{} 0 &{} -2 &{} 1 &{} 0\\ 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 &{} 0 &{} 0 &{} -1 &{} 1 &{} 0\\ 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} -1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -2 &{} 2 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} 0 &{} 0 &{} 1 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -2 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -3 &{} 2 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 3 &{} 0 &{} 0 &{} 2 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 &{} 1 &{} -1 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 3 &{} 0 &{} -1 &{} 2 &{} -1 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} -1 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 3 &{} -3 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -3 &{} 0 &{} 0 &{} -2 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -4 &{} 2 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 3 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} -3 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 \end{array}\right) , } \end{aligned}$$

The automorphism f of Theorem 39 acts on the Néron–Severi lattice by

$$\begin{aligned} {f_{\mathcal {B}}=\left( \begin{array}{ccccccccccccccccccc} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0\\ 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} 2 &{} -1 &{} 0 &{} 0 &{} 1 &{} -1 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1\\ 0 &{} -3 &{} 2 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1 &{} -1 &{} 2 &{} -2 &{} -3 &{} 2 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} -1\\ 0 &{} -1 &{} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} -2 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 1 &{} -1 &{} 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0\\ 1 &{} 1 &{} 0 &{} 0 &{} 0 &{} -1 &{} 0 &{} 0 &{} 0 &{} -1 &{} 2 &{} 2 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} -1 &{} 1 &{} -1 &{} 1 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} 1 &{} 2 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} -1 &{} 1 &{} 0 &{} 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} 1 &{} -1 &{} -1 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0\\ 1 &{} 2 &{} -1 &{} 0 &{} 0 &{} -2 &{} 1 &{} 0 &{} 0 &{} -1 &{} 2 &{} 2 &{} -1 &{} 1 &{} 0 &{} 1 &{} 1 &{} 0 &{} 1\\ 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} -1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 1 &{} 1 &{} -1 &{} 0 &{} 1 &{} -1 &{} 0 &{} 0 &{} 0 &{} -1 &{} 2 &{} 2 &{} -1 &{} 1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0\\ 1 &{} -1 &{} 1 &{} 1 &{} 0 &{} 0 &{} -1 &{} 1 &{} -1 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0\\ -1 &{} -2 &{} 1 &{} 0 &{} 0 &{} 2 &{} -1 &{} 0 &{} 0 &{} 1 &{} -2 &{} -2 &{} 2 &{} -1 &{} 0 &{} -1 &{} 0 &{} 0 &{} -1\\ 0 &{} 2 &{} -1 &{} 0 &{} 0 &{} -2 &{} 1 &{} -1 &{} 0 &{} -2 &{} 2 &{} 3 &{} -1 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 1\\ 0 &{} -2 &{} 1 &{} 0 &{} 0 &{} 2 &{} -1 &{} 1 &{} -1 &{} 1 &{} -1 &{} -2 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} -2 \end{array}\right) . } \end{aligned}$$

Let us define

$$\begin{aligned} S={\textstyle \sum _{j=1}^{9}}A_{i},\,\,S'={\textstyle \sum _{j=1}^{9}}A_{i}' \end{aligned}$$

The classes of the \(\mathrm{(-2)}\)-curves \((R_{i})\) defined in Sect. 4.3 are

$$\begin{aligned} \left( R_{i}\right) =2L-\tfrac{1}{3}\left( S+2S'+3A_{i}+3A'_{i}\right) , \end{aligned}$$

where L is the pullback of a line by the double cover map \(X_{\lambda }\rightarrow \mathbb {P}^{2}\). The translation automorphism \(\tau \) defined in Sect. 4.3 sends L to the class

$$\begin{aligned} L'=7L-\tfrac{4}{3}(S+2S'). \end{aligned}$$

The three polynomials ABD in \(\mathbb {Q}(\omega )(t)\) of Sect. 4.4 are defined as follows:

$$\begin{aligned}&A=\left( \lambda ^{3}t^{2}+3\lambda ^{3}-4t^{2}\right) \left( \lambda ^{3}t^{2}+3\lambda ^{3}+(6\omega +6)\lambda ^{2}t^{2}+(-6\omega -6)\lambda ^{2}-4t^{2}\right) \\&\quad \cdot \left( \lambda ^{3}t^{2}+3\lambda ^{3}-6\lambda ^{2}t^{2}+6\lambda ^{2}-4t^{2}\right) \left( \lambda ^{3}t^{2}+3\lambda ^{3}-6\omega \lambda ^{2}t^{2}+6\omega \lambda ^{2}-4t^{2}\right) ,\\&B=(\lambda ^{6}t^{4}+6\lambda ^{6}t^{2}+9\lambda ^{6}+6\lambda ^{5}t^{4}+12\lambda ^{5}t^{2}-18\lambda ^{5}-18\lambda ^{4}t^{4}+36\lambda ^{4}t^{2}-18\lambda ^{4}\\&\quad -\,8\lambda ^{3}t^{4}-24\lambda ^{3}t^{2}-24\lambda ^{2}t^{4}+24\lambda ^{2}t^{2}+16t^{4})\\&\quad \cdot (\lambda ^{6}t^{4}\!+\!6\lambda ^{6}t^{2}\!+\!9\lambda ^{6}\!+\!(-6\omega -6)\lambda ^{5}t^{4}\!+\!(-12\omega -12)\lambda ^{5}t^{2}\!+\!(18\omega +18)\lambda ^{5}-18\omega \lambda ^{4}t^{4}\\&\quad +\,36\omega \lambda ^{4}t^{2}-18\omega \lambda ^{4}\!-\!8\lambda ^{3}t^{4}\!-\!24\lambda ^{3}t^{2}\!+\!(24\omega \!+\!24)\lambda ^{2}t^{4}\!+\!(-24\omega -24)\lambda ^{2}t^{2}\!+\!16t^{4})\\&\quad \cdot (\lambda ^{6}t^{4}+6\lambda ^{6}t^{2}+9\lambda ^{6}+6\omega \lambda ^{5}t^{4}+12\omega \lambda ^{5}t^{2}-18\omega \lambda ^{5}+(18\omega +18)\lambda ^{4}t^{4}\\&\quad +\,(-36\omega -36)\lambda ^{4}t^{2}+(18\omega +18)\lambda ^{4}-8\lambda ^{3}t^{4}\!-\!24\lambda ^{3}t^{2}\!-\!24\omega \lambda ^{2}t^{4}\!+\!24\omega \lambda ^{2}t^{2}\!+\!16t^{4}), \\&D=((\lambda +2)t-(2\omega +1)\lambda )((\lambda -2\omega -2)t-(2\omega +1)\lambda )((\lambda +2\omega )t-(2\omega +1)\lambda )\\&\quad \cdot (t^{2}-1)((\lambda +2)t\!+\!(2\omega +1)\lambda )((\lambda -2\omega -2)t\!+\!(2\omega +1)\lambda )((\lambda +2\omega )t\!+\!(2\omega +1)\lambda ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohel, D., Roulleau, X. & Sarti, A. A special configuration of 12 conics and generalized Kummer surfaces. manuscripta math. 169, 369–399 (2022). https://doi.org/10.1007/s00229-021-01334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01334-2

Mathematics Subject Classification

Navigation