Skip to main content
Log in

Rankin–Selberg periods for spherical principal series

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

By the unfolding method, Rankin–Selberg L-functions for \({{\,\mathrm{GL}\,}}(n)\times {{\,\mathrm{GL}\,}}(n^{\prime })\) can be expressed in terms of period integrals. These period integrals actually define invariant forms on tensor products of the relevant automorphic representations. By the multiplicity-one theorems due to Sun–Zhu and Chen–Sun such invariant forms are unique up to scalar multiples and can therefore be related to invariant forms on equivalent principal series representations. We construct meromorphic families of such invariant forms for spherical principal series representations of \({{\,\mathrm{GL}\,}}(n,{\mathbb {R}})\) and conjecture that their special values at the spherical vectors agree in absolute value with the archimedean local L-factors of the corresponding L-functions. We verify this conjecture in several cases. This work can be viewed as the first of two steps in a technique due to Bernstein–Reznikov for estimating L-functions using their period integral expressions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Bernstein, J., Reznikov, A.: Analytic continuation of representations and estimates of automorphic forms. Ann. Math. (2) 150(1), 329–352 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bernstein, J., Reznikov, A.: Estimates of automorphic functions. Mosc. Math. J. 4(1), 19–37 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bernstein, J., Reznikov, A.: Periods, subconvexity of \(L\)-functions and representation theory. J. Differ. Geom. 70(1), 129–141 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bernstein, J., Reznikov, A.: Subconvexity bounds for triple \(L\)-functions and representation theory. Ann. Math. (2) 172(3), 1679–1718 (2010)

    Article  MathSciNet  Google Scholar 

  6. Blomer, V.: Subconvexity for twisted \(L\)-functions on GL(3). Am. J. Math. 134(5), 1385–1421 (2012)

    Article  MathSciNet  Google Scholar 

  7. Blomer, V., Buttcane, J., Maga, P.: Applications of the Kuznetsov formula on GL(3) II: the level aspect. Math. Ann. 369(1–2), 723–759 (2017)

    Article  MathSciNet  Google Scholar 

  8. Bump, D.: Barnes’ second lemma and its application to Rankin–Selberg convolutions. Am. J. Math. 110(1), 179–185 (1988)

    Article  MathSciNet  Google Scholar 

  9. Chen, F., Sun, B.: Uniqueness of Rankin–Selberg periods. Int. Math. Res. Not. IMRN 2015(14), 5849–5873 (2015)

    Article  MathSciNet  Google Scholar 

  10. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms, vol. II. McGraw-Hill Book Company Inc, New York (1954). (Based, in part, on notes left by Harry Bateman)

    MATH  Google Scholar 

  11. Etingof, P., Kazhdan, D., Polishchuk, A.: When is the Fourier transform of an elementary function elementary? Sel. Math. (N.S.) 8(1), 27–66 (2002)

    Article  MathSciNet  Google Scholar 

  12. Frahm, J., Feng, S.: Upper bounds for geodesic periods over rank one locally symmetric spaces. Forum Math. 30(5), 1065–1077 (2018)

    Article  MathSciNet  Google Scholar 

  13. Goldfeld, D.: Automorphic Forms and \(L\)-Functions for the Group GL\((n,{\mathbb{R}})\), Cambridge Studies in Advanced Mathematics, vol. 99. Cambridge University Press, Cambridge (2006). (With an appendix by Kevin A. Broughan)

    Google Scholar 

  14. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 8th edn. Elsevier/Academic Press, Amsterdam (2015)

    MATH  Google Scholar 

  15. Hoffstein, J., Ram Murty, M.: \(L\)-Series of Automorphic Forms on GL\((3,{ R})\), Théorie des Nombres, vol. 1989, pp. 398–408. de Gruyter, Berlin (1987)

  16. Ishii, T., Stade, E.: Archimedean zeta integrals on \({\rm GL}_n\times {\rm GL}_m\) and \({\rm SO}_{2n+1}\times {\rm GL}_m\). Manuscr. Math. 141(3–4), 485–536 (2013)

    Article  Google Scholar 

  17. Jacquet, H.: Automorphic Forms on \({\rm GL}(2)\). Part II, Lecture Notes in Mathematics, vol. 278. Springer, Berlin (1972)

    Google Scholar 

  18. Knapp, A.W.: Representation Theory of Semisimple Groups, Princeton Landmarks in Mathematics. Princeton University Press, Princeton (2001). (An overview based on examples, reprint of the (1986) original)

    Google Scholar 

  19. Kobayashi, T., Speh, B.: Symmetry breaking for representations of rank one orthogonal groups. Mem. Amer. Math. Soc. 238 (2015), no. 1126, v+110 pp. (2015)

  20. Kobayashi, T., Speh, B.: Symmetry Breaking for Representations of Rank One Orthogonal Groups II. Lecture Notes in Mathematics, vol. 2234. Springer, Singapore (2018)

    Book  Google Scholar 

  21. Kobayashi, T., Speh, B.: Distinguished representations of \({\rm SO}(n+1,1)\times {\rm SO}(n,1)\), periods and branching laws (2019). In: To Appear in Simons Proceedings, Available at arXiv:1907.05890

  22. Li, X.: Bounds for \({\rm GL}(3)\times {\rm GL}(2)\)\(L\)-functions and \({\rm GL}(3)\)\(L\)-functions. Ann. Math. (2) 173(1), 301–336 (2011)

    Article  MathSciNet  Google Scholar 

  23. Liu, J., Ye, Y.: Subconvexity for Rankin–Selberg \(L\)-functions of Maass forms. Geom. Funct. Anal. 12(6), 1296–1323 (2002)

    Article  MathSciNet  Google Scholar 

  24. McKee, M., Sun, H., Ye, Y.: Improved subconvexity bounds for \(GL(2)\times GL(3)\) and \(GL(3)\)\(L\)-functions by weighted stationary phase. Trans. Am. Math. Soc. 370(5), 3745–3769 (2018)

    Article  Google Scholar 

  25. Miller, S.D., Schmid, W.: On the rapid decay of cuspidal automorphic forms. Adv. Math. 231(2), 940–964 (2012)

    Article  MathSciNet  Google Scholar 

  26. Möllers, J.: Symmetry breaking operators for strongly spherical reductive pairs (2017). Preprint, available at arXiv:1705.06109

  27. Möllers, J., Ørsted, B.: Estimates for the restriction of automorphic forms on hyperbolic manifolds to compact geodesic cycles. Int. Math. Res. Not. IMRN 2017(11), 3209–3236 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Munshi, R.: The circle method and bounds for \(L\)-functions—III: \(t\)-aspect subconvexity for \(GL(3)\)\(L\)-functions. J. Am. Math. Soc. 28(4), 913–938 (2015)

    Article  MathSciNet  Google Scholar 

  29. Nelson, P.D.: Spectral aspect subconvex bounds for \(\rm U_{n+1}\times \rm U\rm _n\) (2020). Preprint, available at arXiv:2012.02187

  30. Reznikov, A.: Rankin–Selberg without unfolding and bounds for spherical Fourier coefficients of Maass forms. J. Am. Math. Soc. 21(2), 439–477 (2008)

    Article  MathSciNet  Google Scholar 

  31. Stade, E.: On explicit integral formulas for \({\rm GL}(n,{ R})\)-Whittaker functions. Duke Math. J. 60(2), 313–362 (1990). (With an appendix by Daniel Bump, Solomon Friedberg and Jeffrey Hoffstein)

    Article  MathSciNet  Google Scholar 

  32. Stade, E.: Hypergeometric series and Euler factors at infinity for \(L\)-functions on \({\rm GL}(3,{\mathbb{R}})\times {\rm GL}(3,{\mathbb{R}})\). Am. J. Math. 115(2), 371–387 (1993)

    Article  MathSciNet  Google Scholar 

  33. Stade, E.: Mellin transforms of \({\rm GL}(n,{\mathbb{R}})\) Whittaker functions. Am. J. Math. 123(1), 121–161 (2001)

    Article  MathSciNet  Google Scholar 

  34. Stade, E.: Archimedean \(L\)-factors on \({\rm GL}(n)\times {\rm GL}(n)\) and generalized Barnes integrals. Israel J. Math. 127, 201–219 (2002)

    Article  MathSciNet  Google Scholar 

  35. Sun, B., Zhu, C.-B.: Multiplicity one theorems: the Archimedean case. Ann. Math. (2) 175(1), 23–44 (2012)

    Article  MathSciNet  Google Scholar 

  36. Young, M.P.: The second moment of \({\rm GL}(3)\times {\rm GL}(2)\)\(L\)-functions integrated. Adv. Math. 226(4), 3550–3578 (2011)

    Article  MathSciNet  Google Scholar 

  37. Young, M.P.: The second moment of \(GL(3)\times GL(2)\)\(L\)-functions at special points. Math. Ann. 356(3), 1005–1028 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Binyong Sun for sharing his insights and ideas on invariant functionals and for bringing the paper [9] to our attention. We are very grateful to the referee for many helpful suggestions and remarks. The first author was supported by a research grant from the Villum Foundation (Grant No. 00025373). The second author was partly supported by the National Natural Science Foundation of China (No. 11901466) and the XJTLU Research Development Funding (RDF-19-02-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Su.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Integral formulas

Appendix A. Integral formulas

We collect some integral formulas for the hypergeometric function and Meijer’s G-function.

1.1 A.1. Hypergeometric function

By [14, equation 7.512 (10)] we have for \({\text {Re}}\gamma ,{\text {Re}}(\alpha -\gamma +\sigma ),{\text {Re}}(\beta -\gamma +\sigma )>0\) and \(|\arg z|<\frac{\pi }{2}\):

$$\begin{aligned}&\int _0^\infty x^{\gamma -1}(x+z)^{-\sigma }{_2F_1}(\alpha ,\beta ;\gamma ;-x)\,dx = \frac{\Gamma (\gamma )\Gamma (\alpha -\gamma +\sigma )\Gamma (\beta -\gamma +\sigma )}{\Gamma (\sigma )\Gamma (\alpha +\beta -\gamma +\sigma )}\nonumber \\&\quad \times {_2F_1}(\alpha -\gamma +\sigma ,\beta -\gamma +\sigma ;\alpha +\beta -\gamma +\sigma ;1-z). \end{aligned}$$
(A.1)

The following integral formula holds for \(|u|>|\beta |\) and \(0<{\text {Re}}\mu <-2{\text {Re}}\nu \) (see [14, equation 3.254 (2)] for \(\lambda =0\)):

$$\begin{aligned} \int _u^\infty (x-u)^{\mu -1}(x^2+\beta ^2)^\nu \,dx= & {} B(\mu ,-\mu -2\nu )u^{\mu +2\nu }\nonumber \\&\times {_2F_1}\left( -\frac{\mu }{2}-\nu ,\frac{1-\mu }{2}-\nu ;\frac{1}{2}-\nu ;-\tfrac{\beta ^2}{u^2}\right) .\nonumber \\ \end{aligned}$$
(A.2)

Using the relation (see [1, Theorem 2.3.2])

$$\begin{aligned} {_2F_1}(a,b;c;x)= & {} \frac{\Gamma (c)\Gamma (b-a)}{\Gamma (c-a)\Gamma (b)}(-x)^{-a}{_2F_1}(a,a-c+1;a-b+1;x^{-1})\\&+\frac{\Gamma (c)\Gamma (a-b)}{\Gamma (c-b)\Gamma (a)}(-x)^{-b}{_2F_1}(b,b-c+1;b-a+1;x^{-1}) \end{aligned}$$

the integral formula in (A.2) can be extended to \(u\in {\mathbb {R}}\), \(\beta >0\), by analytic continuation:

$$\begin{aligned}&\int _u^\infty (x-u)^{\mu -1}(x^2+\beta ^2)^\nu \,dx = \frac{\Gamma \left( \frac{\mu }{2}\right) \Gamma \left( -\frac{\mu }{2}-\nu \right) }{2\Gamma (-\nu )}\beta ^{\mu +2\nu }{_2F_1}\left( -\tfrac{\mu }{2}-\nu ,\tfrac{1-\mu }{2};\tfrac{1}{2};-\tfrac{u^2}{\beta ^2}\right) \nonumber \\&\quad -\frac{\Gamma \left( \frac{\mu +1}{2}\right) \Gamma \left( \frac{1-\mu }{2}-\nu \right) }{\Gamma (-\nu )}\beta ^{\mu +2\nu -1}u\cdot {_2F_1}\left( \tfrac{1-\mu }{2}-\nu ,\tfrac{2-\mu }{2};\tfrac{3}{2};-\tfrac{u^2}{\beta ^2}\right) . \end{aligned}$$
(A.3)

For \({\text {Re}}c>{\text {Re}}b>0\) the following integral representation holds (see [1, Theorem 2.2.1]):

$$\begin{aligned} {_2F_1}(a,b;c;x) = \frac{\Gamma (c)}{\Gamma (b)\Gamma (c-b)}\int _0^1 t^{b-1}(1-t)^{c-b-1}(1-xt)^{-a}\,dt. \end{aligned}$$
(A.4)

The Euler integral representation holds for \({\text {Re}}(\gamma -\beta ),{\text {Re}}\beta >0\) (see [1, equation (2.3.17)]):

$$\begin{aligned} {_2F_1}(\alpha ,\beta ;\gamma ;1-x) = \frac{\Gamma (\gamma )}{\Gamma (\gamma -\beta )\Gamma (\beta )}\int _0^\infty t^{\beta -1}(1+t)^{\alpha -\gamma }(1+xt)^{-\alpha }\,dt.\nonumber \\ \end{aligned}$$
(A.5)

The following transformation formula holds (see [1, Theorem 2.2.5]):

$$\begin{aligned} {_2F_1}(a,b;c;x) = (1-x)^{c-a-b}{_2F_1}(c-a,c-b;c;x). \end{aligned}$$
(A.6)

The following integral formula holds for \(\alpha ,\beta >0\) and \(0<{\text {Re}}\lambda <2{\text {Re}}(\mu +\nu )\) (see [14, 3.259 (3)]):

$$\begin{aligned}&\int _0^\infty x^{\lambda -1}(1+\alpha x^2)^{-\mu }(1+\beta x^2)^{-\nu }\,dx\nonumber \\&\quad = \frac{1}{2}\alpha ^{-\frac{\lambda }{2}}B\left( \frac{\lambda }{2},\mu +\nu -\frac{\lambda }{2}\right) {_2F_1}\left( \nu ,\frac{\lambda }{2};\mu +\nu ;1-\frac{\beta }{\alpha }\right) . \end{aligned}$$
(A.7)

The following integral formula holds for \({\text {Re}}\mu ,{\text {Re}}\nu >0\) (see [14, 7.512 (12)]):

$$\begin{aligned}&\int _0^1 t^{\mu -1}(1-t)^{\nu -1}{_pF_q}(a_1,\ldots ,a_p;b_1,\ldots ,b_q;tx)\,dt\nonumber \\&\quad =\frac{\Gamma (\mu )\Gamma (\nu )}{\Gamma (\mu +\nu )}{_{p+1}F_{q+1}}(a_1,\ldots ,a_p,\mu ;b_1,\ldots ,b_q,\mu +\nu ;x). \end{aligned}$$
(A.8)

Lemma A.1

For \({\text {Re}}\rho ,{\text {Re}}(\alpha -\sigma -\rho +1),{\text {Re}}(\beta -\sigma -\rho +1)>0\) and \(u>0\) we have

$$\begin{aligned}&\int _0^\infty x^{\rho -1}(x+u)^{\sigma -1}{_2F_1}(\alpha ,\beta ;\gamma ;-x)\,dx \\&\quad = \frac{\Gamma (\rho )\Gamma (1-\sigma -\rho )}{\Gamma (1-\sigma )}u^{\rho +\sigma -1}{_3F_2}(\alpha ,\beta ,\rho ;\gamma ,\sigma +\rho ;u)\\&\quad +\frac{\Gamma (\gamma )\Gamma (\alpha -\sigma -\rho +1)\Gamma (\beta -\sigma -\rho +1)\Gamma (\sigma +\rho -1)}{\Gamma (\beta )\Gamma (\alpha )\Gamma (\gamma -\sigma -\rho +1)}\\&\quad \times {_3F_2}(\alpha -\sigma -\rho +1,\beta -\sigma -\rho +1,1-\sigma ;\gamma -\sigma -\rho +1,2-\sigma -\rho ;u). \end{aligned}$$

Note that the integral in Lemma A.1 is more general than the one in [14, equation 7.512 (10)], which corresponds to \(\rho =\gamma \).

Proof

We make use of the integral representation (for \({\text {Re}}c>{\text {Re}}b>0\), see [1, Theorem 2.2.1])

$$\begin{aligned} {_2F_1}(a,b;c;x) = \frac{\Gamma (c)}{\Gamma (b)\Gamma (c-b)}\int _0^1 t^{b-1}(1-t)^{c-b-1}(1-xt)^{-a}\,dx \end{aligned}$$

and the transformation formula (see [1, Theorem 2.3.2])

$$\begin{aligned}&{_2F_1}(a,b;c;x) = \frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}{_2F_1}(a,b,a+b-c+1;1-x)\\&\quad + \frac{\Gamma (a+b-c)\Gamma (c)}{\Gamma (a)\Gamma (b)}(1-x)^{c-a-b}{_2F_1}(c-a,c-b;c-a-b+1;1-x). \end{aligned}$$

First, substituting \(x\mapsto ux\) and using the integral representation we find

$$\begin{aligned}&\int _0^\infty x^{\rho -1}(x+u)^{\sigma -1}{_2F_1}(\alpha ,\beta ;\gamma ;-x)\,dx\\&\quad = \frac{\Gamma (\gamma )}{\Gamma (\gamma -\beta )\Gamma (\beta )}u^{\rho +\sigma -1}\int _0^\infty \int _0^1 t^{\beta -1}(1-t)^{\gamma -\beta -1}x^{\rho -1}(1+x)^{\sigma -1}(1+tux)^{-\alpha }\,dt\,dx. \end{aligned}$$

Next, we compute the integral over x with (A.5):

$$\begin{aligned} = \frac{\Gamma (\gamma )\Gamma (\alpha -\sigma -\rho +1)\Gamma (\rho )}{\Gamma (\gamma -\beta )\Gamma (\beta )\Gamma (\alpha -\sigma +1)}u^{\rho +\sigma -1}\int _0^1 t^{\beta -1}(1-t)^{\gamma -\beta -1}{_2F_1}(\alpha ,\rho ;\alpha -\sigma +1;1-tu)\,dt. \end{aligned}$$

Apply the transformation formula:

$$\begin{aligned}&= \frac{\Gamma (\gamma )\Gamma (\rho )\Gamma (1-\sigma -\rho )}{\Gamma (\gamma -\beta )\Gamma (\beta )\Gamma (1-\sigma )}u^{\rho +\sigma -1}\int _0^1 t^{\beta -1}(1-t)^{\gamma -\beta -1}{_2F_1}(\alpha ,\rho ;\sigma +\rho ;tu)\,dt\\&\quad +\frac{\Gamma (\gamma )\Gamma (\alpha -\sigma -\rho +1)\Gamma (\sigma +\rho -1)}{\Gamma (\gamma -\beta )\Gamma (\beta )\Gamma (\alpha )}\\&\quad \times \int _0^1 t^{\beta -\sigma -\rho }(1-t)^{\gamma -\beta -1}{_2F_1}(1-\sigma ,\alpha -\sigma -\rho +1;2-\sigma -\rho ;tu)\,dt \end{aligned}$$

and finally (A.8):

$$\begin{aligned}&= \frac{\Gamma (\rho )\Gamma (1-\sigma -\rho )}{\Gamma (1-\sigma )}u^{\rho +\sigma -1}{_3F_2}(\alpha ,\beta ,\rho ;\gamma ,\sigma +\rho ;u)\\&\quad +\frac{\Gamma (\gamma )\Gamma (\alpha -\sigma -\rho +1)\Gamma (\beta -\sigma -\rho +1)\Gamma (\sigma +\rho -1)}{\Gamma (\beta )\Gamma (\alpha )\Gamma (\gamma -\sigma -\rho +1)}\\&\quad \times {_3F_2}(\alpha -\sigma -\rho +1,\beta -\sigma -\rho +1,1-\sigma ;\gamma -\sigma -\rho +1,2-\sigma -\rho ;u). \end{aligned}$$

\(\square \)

For the special value of the generalized hypergeometric function \({_3F_2}\) at \(x=1\) we have the following transformation formula, which holds for \({\text {Re}}(d+e-a-b-c),{\text {Re}}(c-d+1)>0\) (see [1, Theorem 2.4.4]):

$$\begin{aligned}&{_3F_2}(a,b,c;d,e;1) = \frac{\Gamma (d)\Gamma (d-a-b)}{\Gamma (d-a)\Gamma (d-b)}{_3F_2}(a,b,e-c;e,a+b-d+1;1)\nonumber \\&\quad +\frac{\Gamma (d)\Gamma (e)\Gamma (d+e-a-b-c)\Gamma (a+b-d)}{\Gamma (a)\Gamma (b)\Gamma (d+e-a-b)\Gamma (e-c)}\nonumber \\&\quad \times {_3F_2}(d-a,d-b,d+e-a-b-c;d+e-a-b,d-a-b+1;1) \end{aligned}$$
(A.9)

For \({\text {Re}}(\gamma -\alpha -\beta )>0\) the special value of \({_2F_1}\) at \(x=1\) is given by (see [1, Theorem 2.2.2])

$$\begin{aligned} {_2F_1}(\alpha ,\beta ;\gamma ;1) = \frac{\Gamma (\gamma )\Gamma (\gamma -\alpha -\beta )}{\Gamma (\gamma -\alpha )\Gamma (\gamma -\beta )}. \end{aligned}$$
(A.10)

1.2 Meijer’s G-function

For \({\text {Re}}(a)<1\) and \({\text {Re}}(b_1),{\text {Re}}(b_2),{\text {Re}}(b_3)>0\):

$$\begin{aligned} G^{30}_{13}\Big (z\Big |\begin{array}{l}a_1\\ b_1,b_2,b_3\end{array}\Big ) = \frac{1}{2\pi \sqrt{-1}} \int _{\mathbb {R}}\frac{\Gamma (b_1+is)\Gamma (b_2+is)\Gamma (b_3+is)}{\Gamma (a_1+is)}z^{-is} \,ds. \end{aligned}$$

We have the following integral representation for \(-1<{\text {Re}}\nu <2\max ({\text {Re}}\alpha ,{\text {Re}}\beta )-\frac{3}{2}\), \(y>0\) (see [10, 8.17 (5)]):

$$\begin{aligned} \int _0^\infty \cos (xy){_2F_1}(\alpha ,\beta ;\gamma ;-x^2)\,dx = \frac{\Gamma (\frac{1}{2})\Gamma (\gamma )}{\Gamma (\alpha )\Gamma (\beta )}y^{-1}G^{30}_{13}\Big (\big (\tfrac{y}{2}\big )^2\Big |\begin{array}{l}\gamma \\ \frac{1}{2},\alpha ,\beta \end{array}\Big ).\nonumber \\ \end{aligned}$$
(A.11)

Lemma A.2

$$\begin{aligned} \int _1^\infty K_\nu (ax)(x^2-1)^\lambda x^\mu \,dx = 2^{-\nu -1}\Gamma (\lambda +1)a^{\nu -1}G^{30}_{13}\Big (\big (\tfrac{a}{2}\big )^2\Big |\begin{array}{l}-\frac{\mu +\nu -2}{2}\\ \frac{1}{2},\tfrac{1}{2}-\nu ,-\lambda -\tfrac{\mu +\nu }{2}\end{array}\Big ). \end{aligned}$$

Proof

By [14, 3.771 (2)] we have for \(a>0\), \({\text {Re}}x>0\) and \({\text {Re}}\nu <\frac{1}{2}\)

$$\begin{aligned} \int _0^\infty (x^2+y^2)^{\nu -\frac{1}{2}}\cos (ay)\,dy = \frac{1}{\sqrt{\pi }}\Big (\frac{2x}{a}\Big )^\nu \cos (\pi \nu )\Gamma (\nu +\frac{1}{2})K_\nu (ax). \end{aligned}$$

Multiplying with \((x^2-1)^\lambda x^{\mu -\nu }\) and integrating over \((1,\infty )\) gives

$$\begin{aligned}&\int _1^\infty K_\nu (ax)(x^2-1)^\lambda x^\mu \,dx = \frac{2^{-\nu }\sqrt{\pi }}{\cos (\pi \nu )\Gamma (\nu +\frac{1}{2})}a^\nu \\&\quad \times \int _1^\infty (x^2-1)^\lambda x^{\mu -\nu }\int _0^\infty (x^2+y^2)^{\nu -\frac{1}{2}}\cos (ay)\,dy\,dx. \end{aligned}$$

Interchanging the order of integration and substituting \(x=t^{-\frac{1}{2}}\) gives

$$\begin{aligned} = \frac{2^{-\nu -1}\sqrt{\pi }}{\cos (\pi \nu )\Gamma (\nu +\frac{1}{2})}a^\nu \int _0^\infty \cos (ay)\int _0^1 t^{-\frac{\nu +\mu +2}{2}-\lambda }(1-t)^\lambda (1+ty^2)^{\nu -\frac{1}{2}}\,dt\,dy. \end{aligned}$$

The inner integral can be computed in terms of the hypergeometric function using (A.4):

$$\begin{aligned}&= \frac{2^{-\nu -1}\sqrt{\pi }\Gamma (\lambda +1)\Gamma (-\lambda -\frac{\mu +\nu }{2})}{\cos (\pi \nu )\Gamma (\nu +\frac{1}{2})\Gamma (-\frac{\mu +\nu -2}{2})}a^\nu \int _0^\infty \cos (ay){_2F_1}\left( \tfrac{1}{2}-\nu ,-\lambda -\tfrac{\mu +\nu }{2};\right. \\&\quad \left. -\tfrac{\mu +\nu -2}{2};-y^2\right) \,dy. \end{aligned}$$

By (A.11) and Euler’s reflection formula this equals the claimed formula. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frahm, J., Su, F. Rankin–Selberg periods for spherical principal series. manuscripta math. 168, 1–33 (2022). https://doi.org/10.1007/s00229-021-01295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-021-01295-6

Mathematics Subject Classification

Navigation