Skip to main content
Log in

A note on rigidity of Einstein four-manifolds with positive sectional curvature

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we first prove a topological obstruction for a four-dimensional manifold carrying an Einstein metric. More precisely, assume (Mg) is a closed Einstein four-manifold with \(Ric=\rho g\). Denote by K the sectional curvature of M. If \(K\ge \delta \ge \frac{2\rho -\sqrt{5}\left|\rho \right|}{6}\) (or \(K\le \delta \le \frac{2\rho +\sqrt{5}}{6}\)) for some constant \(\delta \), then the Euler characteristic \(\chi \) and the signature \(\tau \) of M satisfy

$$\begin{aligned}\chi \ge \left( \dfrac{3}{8\left( 1-3\delta /\rho \right) ^2} +\dfrac{3}{2}\right) \left|\tau \right|.\end{aligned}$$

Our second result is a rigidity theorem for closed oriented Einstein four-manifolds with positive sectional curvature. Assume \(\lambda _1\) is the first eigenvalue of the Laplacian of an oriented closed Einstein four-manifold (Mg) with \(Ric = g\). We show that M must be isometric to a round 4-sphere or \(\mathbb {CP}^2\) with the (normalized) Fubini-Study metric if the sectional curvature bounded above by \(1-\frac{4}{9\lambda _1+12}\) (or bounded below by \(\frac{2}{9\lambda _1+12}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avez, A.: Applications de la formule de Gauss–Bonnet–Chern aux variétés à quatre dimensions. C. R. Acad. Sci. Paris 256, 5488–5490 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Berger, M.: Sur les variétés à opérateur de courbure positif. C. R. Acad. Sci. Paris 253, 2832–2834 (1961)

    MathSciNet  MATH  Google Scholar 

  3. Berger, M.: Sur quleques variétés riemanniennes compactes d’Einstein. C. R. Acad. Sci. Paris 260, 1554–1557 (1965)

    MathSciNet  MATH  Google Scholar 

  4. Besse, A.: Einstein manifolds. volume 10 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1987). https://doi.org/10.1007/978-3-540-74311-8

  5. Brendle, S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151, 1–21 (2010). https://doi.org/10.1215/00127094-2009-061

    Article  MathSciNet  MATH  Google Scholar 

  6. Brendle, S., Schoen, R.: Classification of manifolds with weakly \(1/4\)-pinched curvatures. Acta Math. 200, 1–13 (2008). https://doi.org/10.1007/s11511-008-0022-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Brendle, S., Schoen, R.: Manifolds with \(1/4\)-pinched curvature are space forms. J. Am. Math. Soc. 22, 287–307 (2009). https://doi.org/10.1090/S0894-0347-08-00613-9

    Article  MathSciNet  MATH  Google Scholar 

  8. Calderbank, D., Gauduchon, P., Herzlich, M.: Refined Kato inequalities and conformal weights in Riemannian geometry. J. Funct. Anal. 173, 214–255 (2000). https://doi.org/10.1006/jfan.2000.3563

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, X., Tran, H.: Einstein four-manifolds of pinched sectional curvature. Adv. Math. 335, 322–342 (2018a). https://doi.org/10.1016/j.aim.2018.07.003

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, X., Tran, H.: Four-manifolds of pinched sectional curvature. (2018b). arXiv:1809.05158

  11. Cao, X., Wu, P.: Einstein four-manifolds of three-nonnegative curvature operator (2014). http://pi.math.cornell.edu/~cao/3nonnegative.pdf

  12. Costa, E.: On Einstein four-manifolds. J. Geom. Phys. 51, 244–255 (2004). https://doi.org/10.1016/j.geomphys.2003.10.013

    Article  MathSciNet  MATH  Google Scholar 

  13. Derdziński, A.: (1983) Self-dual Kähler manifolds and Einstein manifolds of dimension four. Compositio Math. 49, 405–433. http://www.numdam.org/item?id=CM_1983__49_3_405_0

  14. DeTurck, D., Kazdan, J.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. (4) 14, 249–260 (1981). http://www.numdam.org/item?id=ASENS_1981_4_14_3_249_0

  15. Diógenes, R., Ribeiro, E.: Four-dimensional manifolds with pinched positive sectional curvature. Dedicata Geom. (2018). https://doi.org/10.1007/s10711-018-0373-y

    Article  MATH  Google Scholar 

  16. Diógenes, R., Ribeiro, E., Rufino, E.: Four-manifolds with positive curvature (2018). arXiv:1809.06150

  17. Gursky, M., Lebrun, C.: On Einstein manifolds of positive sectional curvature. Ann. Global Anal. Geom. 17, 315–328 (1999). https://doi.org/10.1023/A:1006597912184

    Article  MathSciNet  MATH  Google Scholar 

  18. Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geome. 9, 435–441 (1974). http://projecteuclid.org/euclid.jdg/1214432419

  19. Lichnerowicz, A.: Géométrie des groupes de transformations. Dunod, Paris, Travaux et Recherches Mathématiques, III. Dunod, Paris (1958)

  20. Micallef, M., Wang, M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72, 649–672 (1993). https://doi.org/10.1215/S0012-7094-93-07224-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Ribeiro, E.: Rigidity of four-dimensional compact manifolds with harmonic Weyl tensor. Ann. Mat. Pura Appl. 4(195), 2171–2181 (2016). https://doi.org/10.1007/s10231-016-0557-8

    Article  MathSciNet  MATH  Google Scholar 

  22. Wu, P.: Curvature decompositions on Einstein four-manifolds. New York J. Math. 23, 1739–1749 (2017a). http://nyjm.albany.edu:8000/j/2017/23_1739.html

  23. Wu, P.: A note on Einstein four-manifolds with positive curvature. J. Geom. Phys. 114, 19–22 (2017b). https://doi.org/10.1016/j.geomphys.2016.11.017

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, P.: A Weitzenböck formula for canonical metrics on four-manifolds. Trans. Am. Math. Soc. 369, 1079–1096 (2017c). https://doi.org/10.1090/tran/6964

    Article  MATH  Google Scholar 

  25. Xu, H., Gu, J.: Rigidity of Einstein manifolds with positive scalar curvature. Math. Ann. 358, 169–193 (2014). https://doi.org/10.1007/s00208-013-0957-7

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, D.: Rigidity of Einstein \(4\)-manifolds with positive curvature. Invent. Math. 142, 435–450 (2000). https://doi.org/10.1007/PL00005792

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is partially supported by National Natural Science Foundation of China (Grant No. 11601442). The second author is partially supported by the National Natural Science Foundation of China (Grant Nos. 11971358, 11801420) and the Youth Talent Training Program of Wuhan University. The second author would like to thank the Max Planck Institute for Mathematics in the Sciences for good working conditions when this work carried out. Both of the two authors want to thank the anonymous referee for a very careful reading and for suggesting corrections.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Q., Sun, L. A note on rigidity of Einstein four-manifolds with positive sectional curvature. manuscripta math. 165, 269–282 (2021). https://doi.org/10.1007/s00229-020-01217-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-020-01217-y

Mathematics Subject Classification

Navigation