Skip to main content
Log in

Rigidity of Einstein manifolds with positive scalar curvature

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove that if \(M^n(n\ge 4)\) is a compact Einstein manifold whose normalized scalar curvature and sectional curvature satisfy pinching condition \(R_0>\sigma _{n}K_{\max }\), where \(\sigma _n\in (\frac{1}{4},1)\) is an explicit positive constant depending only on \(n\), then \(M\) must be isometric to a spherical space form. Moreover, we prove that if an \(n(\ge {\!\!4})\)-dimensional compact Einstein manifold satisfies \(K_{\min }\ge \eta _n R_0,\) where \(\eta _n\in (\frac{1}{4},1)\) is an explicit positive constant, then \(M\) is locally symmetric. It should be emphasized that the pinching constant \(\eta _n\) is optimal when \(n\) is even. We then obtain some rigidity theorems for Einstein manifolds under \((n-2)\)-th Ricci curvature and normalized scalar curvature pinching conditions. Finally we extend the theorems above to Einstein submanifolds in a Riemannian manifold, and prove that if \(M\) is an \(n(\ge {\!\!4})\)-dimensional compact Einstein submanifold in the simply connected space form \(F^{N}(c)\) with constant curvature \(c\ge 0\), and the normalized scalar curvature \(R_0\) of \(M\) satisfies \(R_0>\frac{A_n}{A_n+4n-8}(c+H^2),\) where \(A_n=n^3-5n^2+8n\), and \(H\) is the mean curvature of \(M\), then \(M\) is isometric to a standard \(n\)-sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger, M.: Sur quelques variétés d’Einstein compactes. Ann. Mat. Pura Appl. 53, 89–95 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Besse, A.: Einstein manifolds. Springer-Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  3. Böhm, C., Wilking, B.: Manifolds with positive curvature operators are space forms. Ann. Math. 167, 1079–1097 (2008)

    Article  MATH  Google Scholar 

  4. Brendle, S.: A general convergence result for the Ricci flow in higher dimensions. Duke Math. J. 145, 585–601 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Brendle, S.: Ricci flow and the sphere theorem. In: Graduate Studies in Mathematics. Vol. 111. Americam Mathematical Society, Providence (2010)

  6. Brendle, S., Schoen, R.: Manifolds with \(1/4\)-pinched curvature are space forms. J. Amer. Math. Soc. 22, 287–307 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brendle, S., Schoen, R.: Classification of manifolds with weakly \(1/4\)-pinched curvatures. Acta Math. 200, 1–13 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brendle, S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151, 1–21 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Araujo Costa, É.: On Einstein four-manifolds. J. Geom. Phys 51, 244–255 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gu, J.R., Xu, H.W.: The sphere theorems for manifolds with positive scalar curvature. J. Differ. Geom. 92, 507–545 (2012)

    MATH  MathSciNet  Google Scholar 

  11. Harish, S.: Manifolds with nonnegative isotropic curvature. Commu. Anal. Geom. 17, 621–635 (2009)

    Article  MATH  Google Scholar 

  12. Hartman, P.: Oscillation criteria for self-adjoint second-order differential systems and “principal sectional curvature”. J. Differ. Equ. 34, 326–338 (1979)

    Article  MATH  Google Scholar 

  13. Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geom. 9, 435–441 (1974)

    MATH  MathSciNet  Google Scholar 

  14. Lawson, B., Simons, J.: On stable currents and their application to global problems in real and complex geometry. Ann. Math. 98, 427–450 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  15. Micallef, M., Moore, J.D.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. 127, 199–227 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  16. Micallef, M., Wang, M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72, 649–672 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Petersen, P., Tao, T.: Classification of almost quarter-pinched manifolds. Proc. Am. Math. Soc. 137, 2437–2440 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Schoen, R., Yau, S.T.: Lectures on differential geometry. In: Conference Proceedings and Lecture Notes in Geometry and Topology I. International Press, Cambridge (1994)

  19. Shen, Z.M.: Rigidity theorems for nonpositive Einstein metrics. Proc. Am. Math. Soc. 116, 1107–1114 (1992)

    Article  MATH  Google Scholar 

  20. Shen, Z.M.: On complete manifolds of nonnegative \(k\)-th Ricci curvature. Trans. Am. Math. Soc. 338, 289–310 (1993)

    MATH  Google Scholar 

  21. Shen, Z.M.: Complete manifolds with nonnegative Ricci curvature and large volume growth. Invent. Math. 125, 393–404 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shiohama, K., Xu, H.W.: The topological sphere theorem for complete submanifolds. Compositio Math. 107, 221–232 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tachibana, S.: A theorem on Riemannian manifolds with positive curvature operator. Proc. Jpn Acad. 50, 301–302 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  24. Wu, H.: Manifolds of partially positive curvature. Indiana Univ. Math. J. 36, 525–548 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Xin, Y.L.: Application of integral currents to vanishing theorems. Scient. Sinica (A) 27, 233–241 (1984)

    MATH  Google Scholar 

  26. Xu, H.W., Gu, J.R.: Geometric, topological and differentiable rigidity of submanifolds in space forms, Geom. Funct. Anal. doi:10.1007/s00039-013-0231-x (2013)

  27. Xu, H.W., Zhao, E.T.: Topological and differentiable sphere theorems for complete submanifolds. Comm. Anal. Geom. 17, 565–585 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Yang, D.: Rigidity of Einstein 4-manifolds with positive curvature. Invent. Math. 142, 435–450 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Yau, S.T.: Submanifolds with constant mean curvature I. Am. J. Math. 96, 346–366 (1974)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for his valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-ru Gu.

Additional information

Research supported by the NSFC, Grant No. 11071211, 10771187; the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Hw., Gu, Jr. Rigidity of Einstein manifolds with positive scalar curvature. Math. Ann. 358, 169–193 (2014). https://doi.org/10.1007/s00208-013-0957-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-0957-7

Mathematics Subject Classification (2000)

Navigation