Skip to main content
Log in

\(\ell ^2\)-Betti numbers of random rooted simplicial complexes

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We define unimodular measures on the space of rooted simplicial complexes and associate to each measure a chain complex and a trace function. As a consequence, we can define \(\ell ^2\)-Betti numbers of unimodular random rooted simplicial complexes and show that they are continuous under Benjamini-Schramm convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abert, M., Bergeron, N., Biringer, I., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On the growth of \(L^2\)-invariants for sequences of lattices in Lie groups, Ann. Math. (2) 185(3), 711–790 (2017), https://doi.org/10.4007/annals.2017.185.3.1

  2. Abért, M., Thom, A., Virág, B.: Benjamini-Schramm convergence and pointwise convergence of the spectral measures, preprint (2011), available at https://users.renyi.hu/~abert/luckapprox.pdf

  3. Aldous, D., Lyons, R.: Processes on unimodular random networks. Electron. J. Probab. 12(54), 1454–1508 (2007). https://doi.org/10.1214/EJP.v12-463

    Article  MathSciNet  MATH  Google Scholar 

  4. Anné, C., Torki-Hamza, N.: The Gauß-Bonnet operator of an infinite graph. Anal. Math. Phys. 5(2), 137–159 (2015). https://doi.org/10.1007/s13324-014-0090-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Benjamini, I., Schramm, O.: Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6(23), 13 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Bordenave, C.: Spectrum of random graphs, available at https://www.math.univ-toulouse.fr/~bordenave/coursSRG.pdf

  7. Bowen, L.: Cheeger constants and \(L^{2}\)-Betti numbers. Duke Math. J. 164(3), 569–615 (2015). https://doi.org/10.1215/00127094-2871415

    Article  MathSciNet  MATH  Google Scholar 

  8. Carderi, A., Gaboriau, D., de la Salle, M.: Non-standard limits of graphs and some orbit equivalence invariants, arXiv e-prints (2018), available at 1812.00704

  9. Chebbi, Y.: The discrete Laplacian of a 2-simplicial complex, ArXiv e-prints (2018), available at 1802.08422

  10. Dixmier, J.: Von Neumann Algebras, North-Holland Publishing Company, (1981)

  11. Dixon, P. G.: Unbounded Operator Algebras, Proceedings of the London Mathematical Society s3-23(1), 53-69, https://doi.org/10.1112/plms/s3-23.1.53

  12. Dykema, K., Noles, J., Sukochev, F., Zanin, D.: On reduction theory and Brown measure for closed unbounded operators, ArXiv e-prints (2015), available at 1509.03362

  13. Eckmann, B.: Introduction to \(\ell ^{2}\)-methods in topology: Reduced \(\ell ^{2}\)-homology, harmonic chains, \(\ell ^{2}\)-betti numbers. Isr. J. Math. 117(1), 183–219 (2000). https://doi.org/10.1007/BF02773570

    Article  Google Scholar 

  14. Elek, G.: Betti Numbers are Testable*. Fete Comb. Comput. Sci. 139–149 (2010). https://doi.org/10.1007/978-3-642-13580-46

  15. Elek, G., Szabó, E.: Hyperlinearity, essentially free actions and \(L^{2}\)-invariants. The sofic property. Math. Ann. 332(2), 421–441 (2005). https://doi.org/10.1007/s00208-005-0640-8

    Article  MathSciNet  MATH  Google Scholar 

  16. Farber, M.: Geometry of growth: approximation theorems for \(L^2\)-invariants, Math. Ann. 311(2), 335–375 https://doi.org/10.1007/s002080050190

  17. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234(2), 289–324 (1977) https://doi.org/10.2307/1997924

  18. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234(2), 325–359 (1977), https://doi.org/10.2307/1997925

  19. Gaboriau, D.: Invariants l2 de relations d’équivalence et de groupes, Publications Mathématiques de l’IHÉS 95, 93–150 (fre) (2002)

  20. Gaboriau, D.: Invariant percolation and harmonic Dirichlet functions. Geom. Funct. Anal. 15(5), 1004–1051 (2005). https://doi.org/10.1007/s00039-005-0539-2

    Article  MathSciNet  MATH  Google Scholar 

  21. Kahle, M.: Topology of random clique complexes. Discrete Math. 309(6), 1658–1671 (2009). https://doi.org/10.1016/j.disc.2008.02.037

    Article  MathSciNet  MATH  Google Scholar 

  22. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006). https://doi.org/10.1007/s00493-006-0027-9

    Article  MathSciNet  MATH  Google Scholar 

  23. Linial, N., Peled, Y.: On the phase transition in random simplicial complexes., Ann. Math. (2) 184(3), 745–773 (2016), https://doi.org/10.4007/annals.2016.184.3.3 (English)

  24. Lück, W.: Approximating \(L^2\)-invariants by their finite-dimensional analogues. Geom. Funct. Anal. 4(4), 455–481 (1994). https://doi.org/10.1007/BF01896404

    Article  MathSciNet  MATH  Google Scholar 

  25. Nielsen, O.A.: Direct integral theory, vol. 61. Marcel Dekker (1980)

  26. Nussbaum, A.E.: Reduction theory for unbounded closed operators in Hilbert space. Duke Math. J. 31(1), 33–44 (1964). https://doi.org/10.1215/S0012-7094-64-03103-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Penrose, M.: Random Geometric Graphs, Oxford Studies in Probability, vol. 5. Oxford University Press, Oxford (2003)

  28. Petersen, H.D., Sauer, R., Thom, A.: \(L^2\)-Betti numbers of totally disconnected groups and their approximation by Betti numbers of lattices. J. Topol. 11(1), 257–282 (2018). https://doi.org/10.1112/topo.12056

  29. Wojciechowski, R.K.: Stochastic Completeness of Graphs, PhD Thesis, (2007), arXiv:0712.1570

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schrödl-Baumann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrödl-Baumann, M. \(\ell ^2\)-Betti numbers of random rooted simplicial complexes. manuscripta math. 162, 283–304 (2020). https://doi.org/10.1007/s00229-019-01131-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01131-y

Mathematics Subject Classification

Navigation