Skip to main content
Log in

Simplicial Spanning Trees in Random Steiner Complexes

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

A spanning tree T in a graph G is a sub-graph of G with the same vertex set as G which is a tree. In 1981, McKay proved an asymptotic result regarding the number of spanning trees in random k-regular graphs. In this paper we prove a high-dimensional generalization of McKay’s result for random d-dimensional, k-regular simplicial complexes on n vertices, showing that the weighted number of simplicial spanning trees is of order \((\xi _{d,k}+o(1))^{\left( {\begin{array}{c}n\\ d\end{array}}\right) }\) as \(n\rightarrow \infty \), where \(\xi _{d,k}\) is an explicit constant, provided \(k> 4d^2+d+2\). A key ingredient in our proof is the local convergence of such random complexes to the d-dimensional, k-regular arboreal complex, which allows us to generalize McKay’s result regarding the Kesten–McKay distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abu-Fraiha, A.: Homology of random simplicial complexes based on Steiner systems. Master thesis under the supervision of Roy Meshulam, pp. 1–74 (2016)

  2. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118. Cambridge University Press, Cambridge (2010)

  3. Bender, E.A., Canfield, E.R.: The asymptotic number of labeled graphs with given degree sequences. J. Combin. Theory Ser. A 24(3), 296–307 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duval, A.M., Klivans, C.J., Martin, J.L.: Simplicial matrix-tree theorems. Trans. Am. Math. Soc. 361(11), 6073–6114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eckmann, B.: Harmonische Funktionen und Randwertaufgaben in einem Komplex. Comment. Math. Helv. 17, 240–255 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedman, J.: A proof of Alon’s second eigenvalue conjecture and related problems. Mem. Am. Math. Soc. 195(910), viii+100 (2008)

  7. Gundert, A., Wagner, U.: On eigenvalues of random complexes. Isr. J. Math. 216(2), 545–582 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  9. Kalai, G.: Enumeration of Q-acyclic simplicial complexes. Isr. J. Math. 45(4), 337–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keevash, P.: The existence of designs. arXiv preprint (2014). arXiv:1401.3665

  11. Keevash, P.: Counting designs. J. Eur. Math. Soc. (JEMS) 20(4), 903–927 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kesten, H.: Symmetric random walks on groups. Trans. Am. Math. Soc. 92, 336–354 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linial, N., Peled, Y.: Enumeration and randomized constructions of hypertrees. Random Struct. Algorithms 55(3), 677–695 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lubotzky, A., Luria, Z., Rosenthal, R.: Random Steiner systems and bounded degree coboundary expanders of every dimension. Discrete Comput. Geom. 62(4), 813–831 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman & Hall/CRC, Boca Raton (2003)

    MATH  Google Scholar 

  16. McKay, B.D.: Spanning trees in random regular graphs. In: Proceedings of the 3rd Caribbean Conference on Combinatorics and Computing (Bridgetown, 1981), pp. 139–143. Univ. West Indies, Barbados (1981)

  17. McKay, B.D.: Spanning trees in regular graphs. Eur. J. Combin. 4(2), 149–160 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Parzanchevski, O., Rosenthal, R.: Simplicial complexes: spectrum, homology and random walks. Random Struct. Algorithms 50(2), 225–261 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rosenthal, R.: Simplicial branching random walks. J. Appl. Comput. Topol. arXiv preprint (2014, to appear) arXiv:1412.5406

  20. Tao, T.: 254A, Notes 3A Eigenvalues and Sums of Hermitian Matrices. Terence Tao-blog (2010). https://terrytao.wordpress.com/2010/01/12/254a-notes-3a-eigenvalues-and-sums-of-hermitian-matrices/

  21. Tenenbaum, L.: Estimation of the weighted number of simplicial spanning trees of random \(k\)-regular simplicial complexes. Master thesis, pp. 1–62 (2020)

  22. Wilf, H.S.: Generating Functionology, 3rd edn. A K Peters Ltd, Wellesley (2006)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Alex Lubotzky for fruitful discussions that led to this work. We would also like to thank Antti Knowles, Alan Lew, Zur Luria and Roy Meshulam for their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Rosenthal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ron Rosenthal research partially supported by ISF grant 771/17 and BSF grant 2018330 and Lior Tenenbaum research partially supported by ISF grant 771/17.

Appendices

Appendices

Appendix A: Proof of Theorem 5.4

Let us start by stating a result of Friedmann regarding the spectral gap in the matching model.

Theorem A.1

([6]) Fix \(k\in \mathbb {N}\) and \(\varepsilon >0\). Then there exists a constant \(C_{k,\varepsilon }\in (0,\infty )\) such that a random graph G on n vertices sampled according to the matching model satisfies

$$\begin{aligned} \mathbb {P}\Big (\vert \lambda _i(G)\vert \le 2\sqrt{k-1} +\varepsilon \Big )\ge 1- \frac{C_{k,\varepsilon }}{n^{\tau (k)}},\qquad \forall 2\le i\le n, \end{aligned}$$
(A.1)

where \(\lambda _1(G)\ge ...\ge \lambda _n(G)\) are the eigenvalues of A(G), the adjacency matrix of G, and \( \tau (k)= \lceil \sqrt{k-1} \rceil -1 \). Furthermore, there exists a constant \(C_k>0\), such that

$$\begin{aligned} \mathbb {P}\Big (\lambda _2(G) > 2\sqrt{k-1} \Big )\ge \frac{C_k}{n^{s(k)}}, \end{aligned}$$

where \(s(k)= \lfloor \sqrt{k-1} \rfloor \).

Let \(\epsilon >0\). As stated before in Theorem A.1, a random graph G on n vertices sampled according to the matching model satisfies (A.1). Recall that for every \(\sigma \in X_i^{d-2}\), the link of \(\sigma \), denoted \(\textrm{lk}(X_i,\sigma )\) is a random graph on \(n_i-d+1\) vertices, distributed according to the matching model with parameter k and therefore, the event

$$\begin{aligned} E_{i,\sigma ,\varepsilon } = \{\lambda _2(\textrm{lk}(X_i,\sigma ))>2\sqrt{k-1}+\varepsilon \} \end{aligned}$$

satisfies

$$\begin{aligned} {\mathbb {P}}(E_{i,\sigma ,\varepsilon })\le C_{k,\varepsilon }(n_i-d+1)^{-(\lceil \sqrt{k-1}\rceil -1)}. \end{aligned}$$

A union bound, thus gives

$$\begin{aligned} {\mathbb {P}}\bigg (\bigcup _{\sigma \in X^{d-2}_i} E_{i,\sigma ,\varepsilon }\bigg ) \le |X^{d-2}_i|\cdot C_{k,\varepsilon }(n_i-d+1)^{-(\lceil \sqrt{k-1}\rceil -1)}\le C_{k,\varepsilon }n_i^{d-\lceil \sqrt{k-1}\rceil }, \end{aligned}$$

where in the last bound we used the fact that \(|X^{d-2}_i|=\left( {\begin{array}{c}n_i\\ d-1\end{array}}\right) \).

By Garland’s method (cf. [7]), on the event \(\bigcup _{\sigma \in X^{d-2}_i} E_{i,\sigma ,\varepsilon }\), all non-trivial eigenvalues of the adjacency matrix of \(X_i\) are within \((-\infty ,2d\sqrt{k-1}+\varepsilon )\).

Hence, whenever \(\lceil \sqrt{k-1} \rceil >d+1\), by the Borel-Cantelli lemma, only finitely many of the random complexes \(X_i\) do not satisfy

$$\begin{aligned} \text {spec}(A_{X_i}) \subset (-\infty ,2d\sqrt{k-1}+\varepsilon ). \end{aligned}$$

Since \(\lceil \sqrt{k-1}\rceil >d+1\) whenever \(k>(d+1)^2+1\), the result follows.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenthal, R., Tenenbaum, L. Simplicial Spanning Trees in Random Steiner Complexes. Combinatorica 43, 613–650 (2023). https://doi.org/10.1007/s00493-023-00038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-023-00038-3

Keywords

Mathematics Subject Classification

Navigation