Skip to main content
Log in

Cluster algebras are Cox rings

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Gross, Hacking, and Keel have shown that, in the absence of frozen indices, a cluster \(\mathcal {A}\)-variety with generic coefficients is the universal torsor of the corresponding cluster \(\mathcal {X}\)-variety with corresponding coefficients. We extend this to allow for (partial) compactifications of the \(\mathcal {A}\)- and \(\mathcal {X}\)-spaces, using frozen vectors to capture the data of the boundary divisors. This works even without assuming that the exchange matrix is skew-symmetrizable. When certain assumptions are satisfied, we conclude that the theta bases on the \(\mathcal {A}\)-space yield additive bases of global sections for every line bundle on the leaves of the partially compactified \(\mathcal {X}\)-space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for del Pezzo surfaces: vanishing cycles and coherent sheaves. Invent. Math. 166(3), 537–582 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berchtold, F., Hausen, J.: Homogeneous coordinates for algebraic varieties. J. Algebra 266(2), 636–670 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bondal, A.I.: Helices, representations of quivers and Koszul algebras, Helices and vector bundles, London Mathematical Society Lecture Note Series, vol. 148, pp. 75–95. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  5. Cox, D.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)

    MathSciNet  MATH  Google Scholar 

  6. Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. IHES 103, 1–211 (2006)

    Article  MATH  Google Scholar 

  7. Fock, V., Goncharov, A.: Cluster ensembles, quantization and the dilogarithm. Ann. Sci.Éc. Norm. Sup. (4) 42(6), 865–930 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fulton, W.: Introduction to Toric Varieties, Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

    Google Scholar 

  9. Gross, M., Hacking, P., Keel, S.: Birational geometry of cluster algebras. Algebr. Geom. 2(2), 137–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gross, M., Hacking, P., Keel, S.: Mirror symmetry for log Calabi-Yau surfaces I. Publ. Math. Inst. Hautes Études Sci. 122, 65–168 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gross, M., Hacking, P., Siebert, B.: Theta functions on varieties with effective anti-canonical class. arXiv:1601.07081

  13. Geiss, C., Leclerc, B., Schröer, J.: Partial flag varieties and preprojective algebras. Ann. Inst. Fourier (Grenoble) 58(3), 825–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gross, M., Siebert, B.: Intrinsic mirror symmetry and punctured Gromov–Witten invariants (2016). arXiv:1609.00624

  15. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Book  Google Scholar 

  16. Hu, Y., Keel, S.: Mori dream spaces and GIT. Michigan Math. J. 48, 331–348 (2000). (Dedicated to William Fulton on the occasion of his 60th birthday)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hacking, P., Tevelev, J., Urzúa, G.: Flipping surfaces. J. Algebr. Geom. 26(2), 279–345 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Magee, T.: Fock-Goncharov conjecture and polyhedral cones for \(U \subset \text{SL}_n\) and base affine space \(\text{ SL }_n/U\) (2015). arXiv:1502.03769

  19. Mandel, T.: Scattering diagrams, theta functions, and refined tropical curve counts (in preparation)

  20. Mori, S., On semistable extremal neighborhoods. In: Higher Dimensional Birational Geometry (Kyoto: Advanced Studies in Pure Mathematics, vol. 35, Mathematical Society of Japan, Tokyo 2002, 157–184 (1997)

  21. Scott, J.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. (3) 92(2), 345–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Speyer, D.: An infinitely generated upper cluster algebra (2013). arXiv:1305.6867

  23. Williams, L.: Cluster algebras: an introduction. Bull. Am. Math. Soc. (N.S.) 51(1), 1–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Man-Wai Cheung for helpful discussions and for suggesting the project that motivated this work, as well as Sean Keel for helpful feedback. I would also like to thank the anonymous referee for helpful expository suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Mandel.

Additional information

The author was supported by the National Science Foundation RTG Grant DMS-1246989.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandel, T. Cluster algebras are Cox rings. manuscripta math. 160, 153–171 (2019). https://doi.org/10.1007/s00229-018-1054-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1054-8

Mathematics Subject Classification

Navigation