Skip to main content
Log in

Localization in equivariant operational K-theory and the Chang–Skjelbred property

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We establish a localization theorem of Borel–Atiyah-Segal type for the equivariant operational K-theory of Anderson and Payne (Doc Math 20:357–399, 2015). Inspired by the work of Chang–Skjelbred and Goresky–Kottwitz–MacPherson, we establish a general form of GKM theory in this setting, applicable to singular schemes with torus action. Our results are deduced from those in the smooth case via Gillet–Kimura’s technique of cohomological descent for equivariant envelopes. As an application, we extend Uma’s description of the equivariant K-theory of smooth compactifications of reductive groups to the equivariant operational K-theory of all, possibly singular, projective group embeddings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F.: Elliptic Operators and Compact Groups. Lecture Notes in Mathematics, vol. 401. Springer, Berlin (1974)

    MATH  Google Scholar 

  2. Anderson, D., Payne, S.: Operational \(K\)-theory. Doc. Math. 20, 357–399 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Atiyah, M.F., Segal, G.: The index of elliptic operators: II. Ann. Math. 2(87), 531–545 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bifet, E., De Concini, C., Procesi, C.: Cohomology of regular embeddings. Adv. Math. 82, 1–34 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, A.: Seminar on Transformation Groups. Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton (1960)

  6. Borel, A.: Linear Algebraic Groups, 3rd edn, Springer, Berlin

  7. Borho, W., Brylinski, J.L., MacPherson, R.: Nilpotent Orbits, Primitive Ideals, and Characteristic Classes. Progress in Mathematics, vol. 78. Birkhäuser, Boston (1989)

    Book  MATH  Google Scholar 

  8. Brion, M.: Equivariant Chow groups for torus actions. Transform. Groups 2(3), 225–267 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brion, M.: The behaviour at infinity of the Bruhat decomposition. Comment. Math. Helv. 73, 137–174 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brion, M.: Poincaré duality and equivariant cohomology. Michigan Math. J. 48, 77–92 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brion, M., Joshua, R.: Equivariant Chow ring and Chern classes of wonderful symmetric varieties of minimal rank. Transform. Groups 13(3–4), 471–493 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brion, M., Kumar, S.: Frobenius Splitting Methods in Geometry and Representation Theory. Progress in Mathematics, 231. Birkhäuser, Boston

  13. Brion, M., Vergne, M.: An equivariant Riemann-Roch theorem for complete, simplicial toric varieties

  14. Carrell, J.: The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties. In: Proceedings of Symposia in Pure Mathematics, vol. 56, Part 1, American Mathematical Society, Providence (1994)

  15. Chang, T., Skjelbred, T.: The topological Schur lemma and related results. Ann. Math. 100(2), 307–321 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131, 595–634 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Edidin, D., Graham, W.: Algebraic cycles and completions of equivariant K-theory. Duke Math. J. 144(3), 489 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fulton, W., MacPherson, R.: Categorical Framework for the Study of Singular Spaces, vol. 31(243). Memoirs of the American Mathematical Society (1981)

  19. Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J. Algebr. Geom. 4, 181–193 (1994)

    MathSciNet  MATH  Google Scholar 

  20. Gillet, H.: Homological descent for the \(K\)-theory of coherent sheaves. In: Algebraic \(K\)-Theory, Number Theory, Geometry and Analysis (Bielefeld, 1982), 80–103. Lecture Notes in Mathematics, vol. 1046. Springer, Berlin (1984)

  21. Gonzales, R.: Rational smoothness, cellular decompositions and GKM theory. Geometry and Topology 18(1), 291–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gonzales, R.: Equivariant cohomology of rationally smooth group embeddings. Transform. Groups 20(3), 743–769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gonzales, R.: Equivariant operational Chow rings of \(T\)-linear schemes. Doc. Math. 20, 401–432 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Gonzales, R.: Poincaré duality in equivariant intersection theory. Pro Mathematica 28(56), 54–80 (2014)

    Google Scholar 

  25. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131, 25–83 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kimura, S.: Fractional intersection and bivariant theory. Commun. Alg. 20(1), 285–302

  27. Littelmann, P., Procesi, C.: Equivariant Cohomology of Wonderful Compactifications. In: Operator algebras, unitary representations, enveloping algebras, and invariant theory. Paris (1989)

  28. Merkurjev, A.: Comparison of the equivariant and the standard \(K\)-theory of algebraic varieties. Algebra i Analiz 9(4), 175–214 (1997)

    Google Scholar 

  29. Payne, S.: Equivariant Chow cohomology of toric varieties. Math. Res. Lett. 13(1), 2941 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Renner, L.: Classification of semisimple algebraic monoids. Trans. Am. Math. Soc. 292, 193–223 (1985)

    Article  MATH  Google Scholar 

  31. Renner, L.: Linear algebraic monoids. In: Encyclopedia of Mathematical Sciences, vol. 134. Springer, Berlin (2005)

  32. Renner, L.: The \(H\)-polynomial of a semisimple monoid. J. Algebra 319, 360–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Renner, L.: Hilbert series for torus actions. Adv. Math. 76, 19–32 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thomason, R.: Algebraic K-theory of group scheme actions. Ann. Math. Study 113, 539–563 (1987)

    MATH  Google Scholar 

  35. Thomason, R.: Une formule de Lefschetz en \(K\)-théorie équivariante algébrique. Duke Math. J 68(3), 447–462 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Timashev, D.: Homogeneous spaces and equivariant embeddings. In: Encyclopaedia of Mathematical Sciences 138, Springer, Berlin

  37. Totaro, B.: Chow groups, Chow cohomology and linear varieties. In: Forum of Mathematics, Sigma, vol. 2, p e17 (2014)

  38. Uma, V.: Equivariant \(K\)-theory of compactifications of algebraic groups. Transform. Groups 12(2), 371–406 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vezzosi, G., Vistoli, A.: Higher algebraic \(K\)-theory for actions of diagonalizable algebraic groups. Invent. Math. 153(1), 1–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Gonzales.

Additional information

Supported by the Max-Planck-Institut für Mathematik, the Institut des Hautes Études Scientifiques and DFG Research Grant PE2165/1-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales, R.P. Localization in equivariant operational K-theory and the Chang–Skjelbred property. manuscripta math. 153, 623–644 (2017). https://doi.org/10.1007/s00229-016-0890-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0890-7

Mathematics Subject Classification

Navigation