Skip to main content
Log in

Relative trace formulae toward Bessel and Fourier–Jacobi periods on unitary groups

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We propose an approach, via relative trace formulae, toward the global restriction problem involving Bessel or Fourier–Jacobi periods on unitary groups \({{\rm U}_n \times {\rm U}_m}\) , generalizing the work of Jacquet–Rallis for m = n − 1 (which is a Bessel period). In particular, when m = 0, we recover a relative trace formula proposed by Flicker concerning Kloosterman/Fourier integrals on quasi-split unitary groups. As evidences for our approach, we prove the vanishing part of the fundamental lemmas in all cases, and the full lemma for \({{\rm U}_n \times {\rm U}_n}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avraham A., Gourevitch D.: Multiplicity one theorem for \({({\rm GL}_{n+1}(\mathbb R),{\rm GL}_n(\mathbb R))}\) . Selecta Math. (N.S.) 15(2), 271–294 (2009). doi:10.1007/s00029-009-0544-7

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenbud A., Gourevitch D., Rallis S., Schiffmann G.: Multiplicity one theorems. Ann. Math. (2) 172(2), 1407–1434 (2010). doi:10.4007/annals.2010.172.1413

    Article  MATH  MathSciNet  Google Scholar 

  3. Cluckers R., Loeser F.: Constructible exponential functions, motivic Fourier transform and transfer principle. Ann. Math. (2) 171(2), 1011–1065 (2010). doi:10.4007/annals.2010.171.1011

    Article  MATH  MathSciNet  Google Scholar 

  4. Cogdell, J.W., Piatetski-Shapiro, I.I.: Remarks on Rankin–Selberg Convolutions. Contributions to Automorphic Forms, Geometry, and Number Theory. Johns Hopkins University Press, Baltimore, MD, pp. 255–278 (2004)

  5. Dixmier J., Malliavin, P.: Factorisations de fonctions et de vecteurs indéfiniment différentiables, Bull. Sci. Math. (2), 102(4), 307–330 (French, with English summary) (1978)

    Google Scholar 

  6. Flicker Y.Z.: On distinguished representations. J. Reine Angew. Math. 418, 139–172 (1991). doi:10.1515/crll.1991.418.139

    MATH  MathSciNet  Google Scholar 

  7. Flicker Y.Z.: Distinguished representations and a Fourier summation formula. Bull. Soc. Math. France 120(4), 413–465 (1992) (English, with English and French summaries)

    MATH  MathSciNet  Google Scholar 

  8. Gan W.T., Gross B.H., Prasad D.: Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. Astérisque 346, 1–109 (2012)

    Google Scholar 

  9. Gelbart S., Jacquet H., Rogawski J.: Generic representations for the unitary group in three variables. Israel J. Math. 126, 173–237 (2001). doi:10.1007/BF02784154

    Article  MATH  MathSciNet  Google Scholar 

  10. Gelbart S.S., Rogawski J.D.: L-functions and Fourier–Jacobi coefficients for the unitary group U(3). Invent. Math. 105(3), 445–472 (1991). doi:10.1007/BF01232276

    Article  MATH  MathSciNet  Google Scholar 

  11. Ginzburg, D., Jiang, D., Rallis, S.: On the nonvanishing of the central value of the Rankin–Selberg L-functions. J. Am. Math. Soc., 17(3), 679–722 (2004). doi:10.1090/S0894-0347-04-00455-2

    Google Scholar 

  12. Ginzburg, D., Jiang, D., Rallis, S.: On the Nonvanishing of the Central Value of the Rankin–Selberg L-functions. II, Automorphic Representations, L-functions and Applications: Progress and Prospects, vol. 11. Ohio State University, Mathematics Research Institute Publications. de Gruyter, Berlin, pp. 157–191 (2005)

  13. Ginzburg, D., Jiang, D., Rallis, S.: Models for Certain Residual Representations of Unitary Groups. Automorphic Forms and L-functions I. Global Aspects. Contemporary Mathematics, vol. 488. American Mathematical Society, Providence, RI, pp. 125–146 (2009)

  14. Harris M., Kudla S.S., Sweet W.J.: Theta dichotomy for unitary groups. J. Am. Math. Soc. 9(4), 941–1004 (1996). doi:10.1090/S0894-0347-96-00198-1

    Article  MATH  MathSciNet  Google Scholar 

  15. Harris, R.N.: A refined Gross–Prasad conjecture for unitary groups. ProQuest LLC, Ann Arbor, MI. Ph.D. Thesis, University of California, San Diego (2011)

  16. Ichino A., Ikeda T.: On the periods of automorphic forms on special orthogonal groups and the Gross–Prasad conjecture. Geom. Funct. Anal. 19(5), 1378–1425 (2010). doi:10.1007/s00039-009-0040-4

    Article  MATH  MathSciNet  Google Scholar 

  17. Jacquet H.: Relative Kloosterman integrals for GL(3). II. Can. J. Math. 44(6), 1220–1240 (1992). doi:10.4153/CJM-1992-073-6

    Article  MATH  MathSciNet  Google Scholar 

  18. Jacquet, H.: Archimedean Rankin–Selberg Integrals. Automorphic Forms and L-functions II. Local Aspects. Contemporary Mathematics, vol. 489. American Mathematical Society, Providence, RI, pp. 57–172 (2009). doi:10.1090/conm/489/09547

  19. Jacquet, H., Chen, N.: Positivity of quadratic base change L-functions. Bull. Soc. Math. France 129(1), 33–90 (English, with English and French summaries) (2001)

    Google Scholar 

  20. Jacquet H., Piatetskii-Shapiro I.I., Shalika J.A.: Automorphic forms on GL(3). II. Ann. Math. (2) 109(1), 213–258 (1979). doi:10.2307/1971112

    Article  Google Scholar 

  21. Jacquet H., Piatetskii–Shapiro I.I., Shalika J.A.: Rankin–Selberg convolutions. Am. J. Math. 105(2), 367–464 (1983). doi:10.2307/2374264

    Article  MATH  MathSciNet  Google Scholar 

  22. Jacquet, H., Rallis, S.: On the Gross–Prasad Conjecture for Unitary Groups. On Certain L-functions. In: Clay Mathematics Proceedings, vol. 13. American Mathematical Society, Providence, RI, pp. 205–264 (2011)

  23. Jacquet H., Shalika J.A.: On Euler products and the classification of automorphic representations. I. Am. J. Math. 103(3), 499–558 (1981). doi:10.2307/2374103

    Article  MATH  MathSciNet  Google Scholar 

  24. Jacquet H., Shalika J.A.: On Euler products and the classification of automorphic representations. II. Am. J. Math. 103(4), 777–815 (1981). doi:10.2307/2374050

    Article  MATH  MathSciNet  Google Scholar 

  25. Jacquet, H., Shalika, J.A.: Rankin–Selberg convolutions: Archimedean theory. Festschrift in honor of I.I. Piatetski-Shapiro on the occasion of his sixtieth birthday. Part I (Ramat Aviv, 1989). In: Israel Mathematical Conference Proceedings, vol. 2, Weizmann, Jerusalem, pp. 125–207 (1990)

  26. Jacquet, H., Ye, Y.: Relative Kloosterman integrals for GL(3). Bull. Soc. Math. France 120(3), 263–295 (English, with English and French summaries) (1992)

    Google Scholar 

  27. Jiang D., Sun B., Sun B., Sun B.: Uniqueness of Bessel models: the Archimedean case. Geom. Funct. Anal. 20(3), 690–709 (2010). doi:10.1007/s00039-010-0077-4

    Article  MATH  MathSciNet  Google Scholar 

  28. Liu, Y.: Refined Gan–Gross–Prasad conjecture for Bessel periods J. Reine Angew. Math. (to appear). http://math.mit.edu/~liuyf/

  29. Liu Y., Sun B.: Uniqueness of Fourier–Jacobi models: the Archimedean case. J. Funct. Anal. 265(12), 3325–3344 (2013). doi:10.1016/j.jfa.2013.08.034

    Article  MATH  MathSciNet  Google Scholar 

  30. Mao Z.: Relative Kloosterman integrals for GL(3). III. Can. J. Math. 45(6), 1211–1230 (1993). doi:10.4153/CJM-1993-068-1

    Article  MATH  Google Scholar 

  31. Ngô, B.: Le lemme fondamental de Jacquet et Ye en caractéristique positive. Duke Math. J. 96(3), 473–520 (French) (1999). doi:10.1215/S0012-7094-99-09615-1

  32. Rallis, S., Schiffmann, G.: Multiplicity one conjectures (2007). arXiv.0705.2168v1

  33. Sun B.: Multiplicity one theorems for Fourier–Jacobi models. Am. J. Math. 134(6), 1655–1678 (2012). doi:10.1353/ajm.2012.0044

    Article  MATH  Google Scholar 

  34. Sun B., Zhu C.-B.: Multiplicity one theorems: the Archimedean case. Ann. Math. (2) 175(1), 23–44 (2012). doi:10.4007/annals.2012.175.1.2

    Article  MATH  MathSciNet  Google Scholar 

  35. Xue, H.: The Gan–Gross–Prasad conjecture for \({{\rm U}(n) \times {\rm U}(n)}\) (preprint). http://math.columbia.edu/~xuehang/

  36. Ye Y.: Kloosterman integrals and base change for GL(2). J. Reine Angew. Math. 400, 57–121 (1989). doi:10.1515/crll.1989.400.57

    MATH  MathSciNet  Google Scholar 

  37. Yun, Z.: The fundamental lemma of Jacquet and Rallis. Duke Math. J. 156(2), 167–227 (With an appendix by Julia Gordon) (2011). doi:10.1215/00127094-2010-210

  38. Zhang, W.: Fourier transform and the global Gan–Gross–Prasad conjecture for unitary groups. Ann. Math. (to appear) http://www.math.columbia.edu/~wzhang/math/pub.html

  39. Zhang, W.: Automorphic period and the central value of Rankin–Selberg L-function. J. Am. Math. Soc. J. Amer. Math. Soc. 27(2), 541–612 (2014). doi:10.1090/S0894-0347-2014-00784-0

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y. Relative trace formulae toward Bessel and Fourier–Jacobi periods on unitary groups. manuscripta math. 145, 1–69 (2014). https://doi.org/10.1007/s00229-014-0666-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0666-x

Mathematics Subject Classification (1991)

Navigation