Skip to main content
Log in

Extinction profile of the logarithmic diffusion equation

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let \({N \geq 3}\) and u be the solution of u t = Δ log u in \({\mathbb{R}^N \times (0, T)}\) with initial value u 0 satisfying \({B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}\) for some constants k 1k 2 > 0 where \({B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}\) is the Barenblatt solution for the equation and \({u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}\) for some constant k 0 > 0 if \({N \geq 4}\). We give a new different proof on the uniform convergence and \({L^1(\mathbb{R}^N)}\) convergence of the rescaled function \({\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}\), on \({\mathbb{R}^N}\) to the rescaled Barenblatt solution \({\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}\) for some k 0 > 0 as \({s \rightarrow \infty}\). When \({N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}\) in \({\mathbb{R}^N}\), and \({|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}\) for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in \({\mathbb{R}^N}\) of the rescaled solution \({\tilde{u}(x, s)}\) to \({\tilde{B}_{k_0}(x)}\) as \({s \rightarrow \infty}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: The porous medium equation, CIME Lectures. In: Some Problems in Nonlinear Diffusion, Lecture Notes in Mathematics 1224. Springer, New York (1986)

  2. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vazquez J.L.: Asymptotics of the fast diffusion equaiton via entropy estimates. Arch. Rat. Mech. Anal. 191, 347–385 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bonforte M., Dolbeault J., Grillo G., Vazquez J.L.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Nat. Acad. Sci. 107(38), 16459–16464 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bonforte M., Grillo G., Vazquez J.L.: Special fast diffusion with slow asymptotics: entropy method and flow on a Riemannian manifold. Arch. Rat. Mech. Anal. 196, 631–680 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusion-Initial Value Problems and Local Regularity Theory, Tracts in Mathematics 1, European Mathematical Society, 2007

  6. Daskalopoulos P., del Pino M.A.: Type II collapsing of maximal solutions to the Ricci flow in \({\mathbb{R}^2}\). Ann. Inst. H. Poincaré Anal. Non Linaire 24, 851–874 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daskalopoulos P., Sesum N.: On the extinction profile of solutions to fast diffusion. J. Reine Angew. Math. 622, 95–119 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Daskalopoulos P., Sesum N.: Type II extinction profile of maximal solutions to the Ricci flow equation. J. Geom. Anal. 20, 565–591 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Gennes P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)

    Article  Google Scholar 

  10. Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order. 2nd edn. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  11. Hsu S.Y.: Asymptotic profile of solutions of a singular diffusion equation as \({t \rightarrow \infty}\). Nonlinear Anal. TMA 48, 781–790 (2002)

    Article  MATH  Google Scholar 

  12. Hsu S.Y.: Asymptotic behaviour of solutions of the equation u t =  Δ log u near the extinction time. Adv. Differ. Equ. 8(2), 161–187 (2003)

    MATH  Google Scholar 

  13. Hsu S.Y.: Behaviour of solutions of a singular diffusion equation near the extinction time. Nonlinear Anal. TMA 56(1), 63–104 (2004)

    Article  MATH  Google Scholar 

  14. Hui K.M.: Existence of solutions of the equation u t =  Δ log u. Nonlinear Anal. TMA 37, 875–914 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hui K.M.: On some Dirichlet and Cauchy problems for a singular diffusion equation. Differ. Integral Equ. 15(7), 769–804 (2002)

    MATH  MathSciNet  Google Scholar 

  16. Hui K.M.: Collapsing behaviour of a singular diffusion equation. Discret. Continuous Dyn. Syst.-Ser. A 32(6), 2165–2185 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kato T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1973)

    Article  Google Scholar 

  18. Ladyzenskaya, O.A., Solonnikov, V.A., Uraltceva, N.N. Linear and Quasilinear Equations of Parabolic Type. Transl. Math. Mono. vol. 23. Amer. Math. Soc., Providence, RI (1968)

  19. Lions P.L., Toscani G.: Diffusive limit for finite velocity Boltzmann kinetic models. Revista Matematica Iberoamericana 13(3), 473–513 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Osher S.J., Ralston J.V.: L 1 stability of traveling waves with applications to convective porous media flow. Comm. Pure Appl. Math. 35, 737–749 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  21. Peletier, L.A.: The porous medium equation. In: Amann, H., Bazley, N., Kirchgassner, K. (eds.) Applications of Nonlinear Analysis in the Physical Sciences. Pitman, Boston (1981)

  22. Rodriquez A., Vazquez J.L., Esteban J.R.: The fast diffusion equation with logarithmic nonlinearity and the evolution of conformal metrics in the plane. Adv. Differ. Equ. 1, 21–50 (1996)

    Google Scholar 

  23. Rodriquez A., Vazquez J.L., Esteban J.R.: The maximal solution of the logarithmic fast diffusion equation in two space dimensions. Adv. Differ. Equ. 2, 867–894 (1997)

    Google Scholar 

  24. Vazquez J.L.: Nonexistence of solutions for nonlinear heat operators of fast-diffusion type. J. Math. Pures Appl. 71, 503–526 (1992)

    MATH  MathSciNet  Google Scholar 

  25. Vazquez J.L.: Smoothing and Decay Estimates for Nonlinear Parabolic Equations of Porous Medium Type. Oxford University Press, New York (2006)

    Book  Google Scholar 

  26. Vazquez J.L.: The Porous Medium Equation Mathematical Theory. Oxford University Press, New York (2007)

    MATH  Google Scholar 

  27. Williams M.B., Davis S.H.: Non-linear theory of film rupture. J. Colloidal Interface Sci. 90(1), 220–228 (1982)

    Article  Google Scholar 

  28. Wu L.F.: The Ricci flow on complete R 2. Comm. Anal. Geom. 1, 439–472 (1993)

    MATH  MathSciNet  Google Scholar 

  29. Wu L.F.: A new result for the porous medium equation. Bull. Am. Math. Soc. 28, 90–94 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kin Ming Hui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hui, K.M., Kim, S. Extinction profile of the logarithmic diffusion equation. manuscripta math. 143, 491–524 (2014). https://doi.org/10.1007/s00229-013-0634-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-013-0634-x

Mathematics Subject Classification (2000)

Navigation