Skip to main content
Log in

One-Dimensional Super-Fast Diffusion: Persistence Versus Extinction Revisited—Extinction at Spatial Infinity

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We consider positive classical solutions of

$$\begin{aligned} v_t=(v^{m-1}v_x)_x, \qquad x\in {\mathbb {R}}, \ t>0, \qquad (\star ) \end{aligned}$$

in the super-fast diffusion range \(m<-1\). Our main interest is in smooth positive initial data \(v_0=v(\cdot ,0)\) which decay as \(x\rightarrow +\infty \), but which are possibly unbounded as \(x\rightarrow -\infty \), having in mind monotonically decreasing data as prototypes. It is firstly proved that if \(v_0\) decays sufficiently fast only in one direction by satisfying

$$\begin{aligned} v_0(x) \le cx^{-\beta } \qquad \text{ for } \text{ all } ~x>0 \quad \hbox { with some }\quad \beta >\frac{2}{1-m} \end{aligned}$$

and some \(c>0\), then the so-called proper solution of (\(\star \)) vanishes identically in \({\mathbb {R}}\times (0,\infty )\), and accordingly no positive classical solution exists in any time interval in this case. Complemented by some sufficient criteria for solutions to remain positive either locally or globally in time, this condition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay of the initial data. This partially extends some known nonexistence results for (\(\star \)) (Daskalopoulos and Del Pino in Arch Rat Mech Anal 137(4):363–380, 1997) in that it does not require any knowledge on the behavior of \(v_0(x)\) for \(x<0\). Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass influx from \(x=-\infty \) can interact with mass loss at \(x=+\infty \) in a nontrivial manner. Namely, we shall detect examples of monotone initial data, with critical decay as \(x\rightarrow +\infty \) and exponential growth as \(x\rightarrow -\infty \), that lead to solutions of (\(\star \)) which become extinct at a finite positive time, but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms which are such that the corresponding extinction sets coincide with all of \({\mathbb {R}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson, D.G.: Regularity properties of flows through porous media: the interface. Arch. Rat. Mech. Anal. 37, 1–10 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G.: The porous medium equation. Nonlinear diffusion problems, Lect. 2nd 1985 Sess. C.I.M.E. Montecatini Terme/Italy 1985. Lect. Notes Math. 1224, 1–46 (1986)

    Article  Google Scholar 

  3. Aronson, D.G., Caffarelli, L.A.: The initial trace of a solution of the porous medium equation. Trans. Am. Math. Soc. 280, 351–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bénilan, Ph., Crandall, M.G., Pierre, M.: Solutions of the porous medium equation in \({\mathbb{R}}^N\) under optimal conditions on initial values. Indiana Univ. Math. J. 33, 51–87 (1984)

  5. Blanchet, A., Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Rat. Mech. Anal. 191, 347–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonforte, M., Dolbeault, J., Grillo, G., Vázquez, J.L.: Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proc. Nat. Acad. Sci. 107, 16459–16464 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonforte, M., Segatti, A., Vázquez, J.L.: Non-existence and instantaneous extinction of solutions for singular nonlinear fractional diffusion equations. Calc. Var. Part. Diff. Equ. 55: 68 (2016)

  8. Brézis, H., Friedman, A.: Nonlinear parabolic equations involving measures as initial conditions. J. Math. Pures Appl. 62, 73–97 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Dahlberg, B.E.J., Kenig, C.E.: Nonnegative solutions of the porous medium equation. Commun. Part. Differ. Equ. 9, 409–437 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daskalopoulos, P., del Pino, M.: On nonlinear parabolic equations of very fast diffusion. Arch. Rat. Mech. Anal. 137(4), 363–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daskalopoulos, P., del Pino, M.: On the Cauchy problem for \(u_t=\Delta \log u\) in higher dimensions. Math. Ann. 313(2), 189–206 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusions. Initial Value Problems and Local Regularity Theory. EMS Tracts in Mathematics. European Mathematical Society, Zürich (2007)

    Book  MATH  Google Scholar 

  13. Daskalopoulos, P., Sesum, N.: On the extinction profile of solutions to fast diffusion. J. Reine Angew. Math. 622, 95–119 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Diaz, G., Diaz, J.I.: Finite extinction time for a class of non-linear parabolic equations. Commun. Part. Differ. Equ. 4, 1213–1231 (1979)

    Article  MATH  Google Scholar 

  15. Esteban, J.R., Rodriguez, A., Vázquez, J.L.: A nonlinear heat equation with singular diffusivity. Commun. Part. Differ. Equ. 13, 985–1039 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fila, M., King, J.R., Winkler, M.: Rate of convergence to Barenblatt profiles for the fast diffusion equation with a critical exponent. J. Lond. Math. Soc. 90, 167–183 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fila, M., Vázquez, J.L., Winkler, M.: A continuum of extinction rates for the fast diffusion equation. Commun. Pure Appl. Anal. 10, 1129–1147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fila, M., Vázquez, J.L., Winkler, M., Yanagida, E.: Rate of convergence to Barenblatt profiles for the fast diffusion equation. Arch. Rat. Mech. Anal. 204, 599–625 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fila, M., Winkler, M.: Optimal rates of convergence to the singular Barenblatt profile for the fast diffusion equation. Proc. R. Soc. Edinburgh Sect. A 146, 309–324 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Galaktionov, V.A., Peletier, L.A.: Asymptotic behaviour near finite-time extinction for the fast diffusion equation. Arch. Rat. Mech. Anal. 139, 83–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Galaktionov, V.A., Vázquez, J.L.: Continuation of blowup solutions of nonlinear heat equations in several space dimensions. Commun. Pure Appl. Math. 50(1), 1–67 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grillo, G., Muratori, M., Punzo, F.: The Porous Medium Equation with Large Initial Data on Negatively Curved Riemannian Manifolds. arXiv:1609.06498

  23. King, J.R.: Self-similar behaviour for the equation of fast nonlinear diffusion. Phil. Trans. R. Soc. Lond. A 343, 337–375 (1993)

    Article  MATH  Google Scholar 

  24. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equations of Parabolic Type. AMS, Providence (1968)

    Google Scholar 

  25. Luckhaus, S., Dal Passo, R.: A degenerate diffusion problem not in divergence form. J. Differ. Equ. 69, 1–14 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Peletier, M.A., Zhang, H.: Self-similar solutions of a fast diffusion equation that do not conserve mass. Differ. Int. Equ. 8, 2045–2064 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Pierre, M.: Nonlinear fast diffusion with measures as data. In: Nonlinear Parabolic Equations: Qualitative Properties of Solutions (Rome, 1985). Pitman Res. Notes Math. Ser. Longman Sci. Tech. Harlow 149, 179–188 (1987)

  28. Rodriguez, A., Vázquez, J.L.: A well-posed problem in singular Fickian diffusion. Arch. Rat. Mech. Anal. 110(2), 141–163 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tomi, F.: Über semilineare elliptische Differentialgleichungen zweiter Ordnung. Math. Z. 111, 350–366 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vázquez, J.L.: Darcy’c Law and the theory of shrinking solutions of fast diffusion equations. SIAM J. Math. Anal. 35(4), 1005–10284 (2004)

    Article  MathSciNet  Google Scholar 

  31. Vázquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Equations of Porous Medium Type. Oxford Lecture Series in Mathematics and its Applications, pp. 33. Oxford University Press, Oxford (2006)

  32. Wiegner, M.: A degenerate diffusion equation with a nonlinear source term. Nonlin. Anal. TMA 28, 1977–1995 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Winkler, M.: Conservation of boundary decay and nonconvergent bounded gradients in degenerate diffusion problems. Adv. Differ. Equ. 13, 27–54 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Winkler, M.: Spatially monotone homoclinic orbits in nonlinear parabolic equations of super-fast diffusion type. Math. Ann. 355(2), 519–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to sincerely thank the anonymous reviewer for numerous detailed remarks and suggestions which substantially supported improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Winkler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkler, M. One-Dimensional Super-Fast Diffusion: Persistence Versus Extinction Revisited—Extinction at Spatial Infinity. J Dyn Diff Equat 30, 331–358 (2018). https://doi.org/10.1007/s10884-017-9577-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9577-3

Keywords

Mathematics Subject Classification

Navigation