Skip to main content
Log in

The classification of Hamiltonian stationary Lagrangian tori in \({{\mathbb {CP}}^2}\) by their spectral data

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

It is known that all weakly conformal Hamiltonian stationary Lagrangian immersions of tori in \({{\mathbb {CP}}^2}\) may be constructed by methods from integrable systems theory. This article describes the precise details of a construction which leads to a form of classification. The immersion is encoded as spectral data in a similar manner to the case of minimal Lagrangian tori in \({{\mathbb {CP}}^2}\) , but the details require a careful treatment of both the “dressing construction” and the spectral data to deal with a loop of flat connexions which is quadratic in the loop parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burstall F.E., Khemar I.: Twistors, 4-symmetric spaces and integrable systems. Math. Ann. 344, 451–461 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burstall F.E., Pedit F.: Harmonic maps via Adler-Kostant-Symes theory. In: Fordy, A.P., Wood, J.C. (eds) Harmonic Maps and Integrable Systems. Aspects of Mathematics E23, Vieweg, Wiesbaden (1994)

    Google Scholar 

  3. Burstall F.E., Pedit F.: Dressing orbits of harmonic maps. Duke Math. J. 80, 353–382 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carberry E., McIntosh I.: Minimal Lagrangian 2-tori in \({{\mathbb {CP}}^2}\) come in real families of every dimension. J. Lond. Math. Soc. (2) 69(2), 531–544 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Castro I., Li H., Urbano F.: Hamiltonian-minimal Lagrangian submanifolds in complex space forms. Pac. J. Math. 227(1), 43–63 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dazord P.: Sur la geometrie des sous-fibres et des feuilletages lagrangiens. Ann. Sci. Ecole Norm. Sup. (4) 14(4), 465–480 (1981)

    MATH  MathSciNet  Google Scholar 

  7. Dorfmeister J., Pedit F., Wu H.: Weierstrass type representation of harmonic maps into symmetric spaces. Commun. Anal. Geom. 6, 633–668 (1998)

    MATH  MathSciNet  Google Scholar 

  8. Hartshorne R.: Algebraic Geometry, Graduate Texts in Mathematics, vol. 52. Springer, New York (1977)

    Google Scholar 

  9. Haskins M.: The geometric complexity of special Lagrangian T 2-cones. Invent. Math. 157(1), 11–70 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hélein, F., Romon, P.: Hamiltonian stationary Lagrangian surfaces in Hermitian symmetric spaces. Differential geometry and integrable systems (Tokyo, 2000). Contemporary Mathematics, vol. 308, pp. 161–178. American Mathematical Society, Providence, RI (2002)

  11. Hélein F., Romon P.: Hamiltonian stationary tori in the complex projective plane. Proc. Lond. Math. Soc. (3) 90(2), 472–496 (2005)

    Article  MATH  Google Scholar 

  12. Hunter, R.: Hamiltonian Stationary Tori in Complex Projective Space. MPhil thesis, University of York (2008)

  13. Khemar I.: Surfaces isotropes de \({\mathbb O}\) et systmes intgrables (French) [Isotropic surfaces in \({\mathbb O}\) and integrable systems]. J. Differ. Geom. 79(3), 479–516 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Ma H.: Hamiltonian stationary Lagrangian surfaces in \({{\mathbb {CP}}^2}\) . Ann. Glob. Anal. Geom. 27, 1–16 (2005)

    Article  MATH  Google Scholar 

  15. Ma H., Schmies M.: Examples of Hamiltonian stationary Lagrangian tori in \({{\mathbb {CP}}^2}\) . Geom. Dedic. 118, 173–183 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. McIntosh I.: Infinite dimensional Lie groups and the two-dimensional Toda lattice. In: Fordy, A.P., Wood, J.C. (eds) Harmonic Maps and Integrable Systems. Aspects of Mathematics E23, Vieweg, Wiesbaden (1994)

    Google Scholar 

  17. McIntosh I.: The construction of all non-isotropic harmonic tori in complex projective space. Int. J. Math. 6, 831–879 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. McIntosh I.: Two remarks on the construction of harmonic tori in \({{\mathbb {CP}}^n}\) . Int. J. Math. 7, 515–520 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. McIntosh I.: On the existence of superconformal 2-tori and doubly periodic affine Toda fields. J. Geom. Phys. 24, 223–243 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. McIntosh I.: Harmonic tori and generalised Jacobi varieties. Commun. Anal. Geom. 9, 423–449 (2001)

    MATH  MathSciNet  Google Scholar 

  21. McIntosh I.: Special Lagrangian cones in \({\mathbb C^3}\) and primitive harmonic maps. J. Lond. Math. Soc. (2) 67, 769–789 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  22. McIntosh, I.: Hamiltonian stationary Lagrangian tori in \({\mathbb R^4}\) and \({{\mathbb {CP}}^2}\) . In: Dillen, F., et al. (eds.) Symposium on the Differential Geometry of Submanifolds, pp. 163–184. Valenciennes (2007)

  23. McIntosh, I., Romon, P.: The spectral data for Hamiltonian stationary Lagrangian tori in \({\mathbb R^4}\) . arXiv 0707.1767

  24. Mironov, A.E.: On the Hamiltonian-minimal Lagrangian tori in \({{\mathbb {CP}}^2}\) (Russian). Sibirsk. Mat. Zh. 44(6), 1324–1328 (2003); translation in Sib. Math. J. 44(6), 1039–1042 (2003)

  25. Mironov, A.E.: New examples of Hamilton-minimal and minimal Lagrangian submanifolds in \({\mathbb C^n}\) and \({{\mathbb {CP}}^n}\) (Russian). Mat. Sb. 195(1), 89–102 (2004); translation in Sb. Math. 195(1–2), 85–96 (2004)

  26. Mironov A.E.: Spectral data for Hamiltonian-minimal Lagrangian tori in \({{\mathbb {CP}}^2}\) . Proc. Steklov Inst. Math. 263, 112–126 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. Oh Y.-G.: Volume minimization of Lagrangian submanifolds under Hamiltonian deformations. Math. Z. 212, 175–192 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Schoen R., Wolfson J.: Minimizing area among Lagrangian surfaces: the mapping problem. J. Differ. Geom. 58(1), 1–86 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Serre J.-P.: Algebraic groups and class fields. Graduate Texts in Mathematics, vol. 117. Springer, New York (1988)

    Google Scholar 

  30. Sharipov R.: Minimal tori in the five dimensional sphere in \({\mathbb C^3}\) . Theor. Math. Phys. 87, 363–369 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Terng, C.-L.: Geometries and symmetries of soliton equations and integrable elliptic equations. Advanced Studies in Pure Mathematics, vol. 51. Surveys on Geometry and Integrable Systems, MSJ (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian McIntosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, R., McIntosh, I. The classification of Hamiltonian stationary Lagrangian tori in \({{\mathbb {CP}}^2}\) by their spectral data. manuscripta math. 135, 437–468 (2011). https://doi.org/10.1007/s00229-010-0425-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-010-0425-6

Mathematics Subject Classification (1991)

Navigation