Skip to main content
Log in

Failure to predict amikacin elimination in critically ill patients with cancer based on the estimated glomerular filtration rate: applying PBPK approach in a therapeutic drug monitoring study

  • Research
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this work was to integrate the Therapeutic Drug Monitoring (TDM) with the model-informed precision dosing (MIPD) approach, using Physiologically-based Pharmacokinetic/Pharmacodynamic (PBPK/PD) modelling and simulation, to explore the relationship between amikacin exposure and estimated glomerular filtration rate (GFR) in critically ill patients with cancer.

Methods

In the TDM study, samples from 51 critically-ill patients with cancer treated with amikacin were analysed. Patients were stratified according to renal function based on GFR status. A full-body PBPK model with 12 organs model was developed using Simcyp V. 21, including steady-state volume of distribution of 0.21 L/kg and renal clearance of 6.9 L/h in healthy adults. PK parameters evaluated were within the 2-fold error range.

Results

During the validation step, predicted vs observed amikacin clearance values after single infusion dose in patients with normal renal function, mild and moderate renal impairment were 7.6 vs 8.1 L/h (7.5 mg/kg dose); 3.8 vs 4.5 L/h (1500 mg dose) and 2.2 vs 3.1 L/h (25 mg/kg dose), respectively. However, predicted vs observed amikacin clearance after a single dose infusion of 1400 mg in critically-ill patients with cancer were 1.46 vs 1.63 (P = 0.6406) L/h (severe), 2.83 vs 1.08 (P < 0.05) L/h (moderate), 4.23 vs 2.49 (P = 0.0625) L/h (mild) and 7.41 vs 3.36 (P < 0.05) L/h (normal renal function).

Conclusion

This study demonstrated that estimated GFR did not predict amikacin elimination in critically-ill patients with cancer. Further studies are necessary to find amikacin PK covariates to optimize the pharmacotherapy in this population. Therefore, TDM of amikacin is imperative in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and materials

Data supporting the results of this study are available upon reasonable request.

References

  1. MacDougall C, Chambers H (2011) Aminogylcosides. In: Brunton L, Chamber B, Knollman B (eds) The pharmacological basis of therapeutics. Mc Graw Hill, New York, NY, USA, pp 1507–1517

    Google Scholar 

  2. Prayle A, Watson A, Fortnum H, Smyth A (2010) Side effects of aminoglycosides on the kidney, ear and balance in cystic fibrosis. Thorax 65:654–658

    Article  PubMed  Google Scholar 

  3. Pitta RD, Gasparetto J, De Moraes TP, Telles JP, Tuon FF (2020) Antimicrobial therapy with aminoglycoside or meropenem in the intensive care unit for hospital associated infections and risk factors for acute kidney injury. Eur J Clin Microbiol Infect Dis 39(4):723–728

    Article  CAS  PubMed  Google Scholar 

  4. Soman R, Bakthavatchalam YD, Nadarajan A, Dwarakanathan HT, Venkatasubramanian R, Veeraraghavan B (2021) Is it time to move away from polymyxins?: evidence and alternatives. Eur J Clin Microbiol Infect Dis 40:461–475

    Article  CAS  PubMed  Google Scholar 

  5. Marsot A, Guilhaumou R, Riff C, Blin O (2017) Amikacin in critically Ill patients: A review of population pharmacokinetic studies. Clin Pharmacokinet 56:127–138

    Article  CAS  PubMed  Google Scholar 

  6. Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, Neely MN, Paiva JA, Pea F, Sjovall F, Timsit JF, Udy AA, Wicha SG, Zeitlinger M, De Waele JJ, Roberts JA (2020) Intensive Care Med 46:1127–1153

    Article  PubMed  PubMed Central  Google Scholar 

  7. Edwards MR, Mythen MG (2014) Fluid therapy in critical illness. Extrem Physiol Med 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oparaoji EC, Cornwell EE, Hekmat E, Cheong RL, Adir JS, Siram S (1993) Aminoglycoside volume of distribution in postoperative patients with septic shock. Clin Pharm 12:131–134

    CAS  PubMed  Google Scholar 

  9. Taccone FS, Laterre PF, Spapen H, Dugernier T, Delattre I, Layeux B, De Backer D, Wittebole X, Wallemacq P, Vincent JL, Jacobs F (2010) Revisiting the loading dose of amikacin for patients with severe sepsis and septic shock. Crit Care 14:R53

    Article  PubMed  PubMed Central  Google Scholar 

  10. Marik PE (1993) Aminoglycoside volume of distribution and illness severity in critically ill septic patients. Anaesth Intensive Care 21:172–173

    Article  CAS  PubMed  Google Scholar 

  11. Garraffo R, Drugeon HB, Dellamonica P, Bernard E, Lapalus P (1990) Determination of optimal dosage regimen for amikacin in healthy volunteers by study of pharmacokinetics and bactericidal activity. Antimicrob Agents Chemother 34(4):614–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lanao JM, Navarro AS, Dominguez-Gil A, Tabernero JM, Rodriguez IC, Gonzalez LA (1983) Amikacin concentrations in serum and blister fluid in healthy volunteers and in patients with renal impairment. J Antimicrob Chemother 12(5):481–488

    Article  CAS  PubMed  Google Scholar 

  13. Delattre IK, Musuamba FT, Nyberg J, Taccone FS, Laterre PF, Verbeeck RK, Jacobs F, Wallemacq PE (2010) Population pharmacokinetic modeling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther Drug Monit 32(6):749–756

    Article  CAS  PubMed  Google Scholar 

  14. De Winter S, van Hest R, Dreesen E, Annaert P, Wauters J, Meersseman W, Van den Eede N, Desmet S, Verelst S, Vanbrabant P, Peetermans W, Spriet I (2021) Quantification and Explanation of the Variability of First-Dose Amikacin Concentrations in Critically Ill Patients Admitted to the Emergency Department: A Population Pharmacokinetic Analysis. Eur J Drug Metab Pharmacokinet 46(5):653–663

    Article  PubMed  Google Scholar 

  15. Meraz-Munoz A, Langote A, Jhaveri DK, Izzedine H, Gudsoorkar P (2021) Acute kidney injury in the patient with cancer. Diagnostics (Basel) 11(4):611

    Article  CAS  PubMed  Google Scholar 

  16. Bagshaw SM, Laupland KB, Doig CJ, Mortis G, Fick GH, Mucenski M, Godinez-Luna T, Svenson LW, Rosenal T (2005) Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: A population-based study. Crit Care 9:R700–R709

    Article  PubMed  PubMed Central  Google Scholar 

  17. Benoit DD, Hoste EA (2010) Acute kidney injury in critically ill patients with cancer. Crit Care Clin 26(1):151–179

    Article  CAS  PubMed  Google Scholar 

  18. Lode H, Grunert K, Koeppe P, Langmaack H (1976) Pharmacokinetic and clinical studies with amikacin, a new aminoglycoside antibiotic. J Infect Dis 134(SUPPL):S316–S322

    Article  CAS  PubMed  Google Scholar 

  19. Mahmoudi L, Mohammadpour AH, Ahmadi A, Niknam R, Mojtahedzadeh M (2013) Influence of sepsis on higher daily dose of amikacin pharmacokinetics in critically ill patients. Eur Rev Med Pharmacol Sci 17(3):285–291

    CAS  PubMed  Google Scholar 

  20. Aréchiga-Alvarado NA, Mellín-Garibay SE, Milán-Segovia RC, Ortiz-Álvarez A, Magana-Aquino M, Romano-Moreno S (2020) Population pharmacokinetics of amikacin administered once daily in patients with different renal functions. Antimicrob Agents Chemother 64:e02178–e2219

    Article  PubMed  PubMed Central  Google Scholar 

  21. Holweger K, Lipp H-P, Dietz K, Hartmann JT, Bokemeyer C (2008) Novel algorithm for more accurate calculation of renal function in adults with cancer. Ann Pharmacother 42:1749–1757

    Article  CAS  PubMed  Google Scholar 

  22. Ainsworth NL, Marshall A, Hatcher H, Whitehead L, Whitfield GA, Earl HM (2012) Evaluation of glomerular filtration rate estimation by Cockcroft-Gault, Jelliffe, Wright and Modification of Diet in Renal Disease (MDRD) formulae in oncology patients. Ann Oncol 23:1845–1853

    Article  CAS  PubMed  Google Scholar 

  23. Silva VTC, Costalonga EC, Coelho FO, Caires RA, Burdmann EA (2018) Assessment of kidney function in patients with cancer. Adv Chronic Kidney Dis 25:49–56

    Article  Google Scholar 

  24. Darwich AS, Polasek TM, Aronson JK, Ogungbenro K, Wright DFB, Achour B, Reny JL, Daali Y, Eiermann B, Cook J, Lesko L, McLachlan AJ, Rostami-Hodjegan A (2021) Model-informed precision dosing: background, requirements, validation, implementation, and forward trajectory of individualizing drug therapy. Annu Rev Pharmacol Toxicol 61:225–245

    Article  CAS  PubMed  Google Scholar 

  25. Lopes JA, Jorge S (2013) The RIFLE and AKIN classifications for acute kidney injury: a critical and comprehensive review. Clin Kidney J 6(1):8–14

    Article  PubMed  Google Scholar 

  26. FDA (2020) Guidance for Industry Pharmacokinetics in patients with impaired renal function –study design, data analysis, and impact on dosing. Available at: https://www.fda.gov/media/78573/download. Accessed 04 Mar 2022.

  27. Karlowsky JA, Zhanel GG (1992) Concepts on the use of liposomal antimicrobial agents: applications for aminoglycosides. Clin Infect Dis 15(4):654–667. https://doi.org/10.1093/clind/15.4.654

    Article  CAS  PubMed  Google Scholar 

  28. Debord J, Charmes JP, Marquet P, Merle L, Lachatre G (1997) Population pharmacokinetics of amikacin in geriatric patients studied with the NPEM-2 algorithm. Int J Clin Pharmacol Ther 35:24–27

    CAS  PubMed  Google Scholar 

  29. Sáez-Fernández EM, Pérez-Blanco JS, Lanao JM, Calvo MV, Martín-Suárez A (2019) Evaluation of renal function equations to predict amikacin clearance. Expert Rev Clin Pharmacol 12:805–813

    Article  PubMed  Google Scholar 

  30. Ryzner KL (2010) Evaluation of aminoglycoside clearance using the modification of diet in renal disease equation versus the Cockcroft-Gault equation as a marker of glomerular filtration rate. Ann Pharmacother 44:1030–1037

    Article  CAS  PubMed  Google Scholar 

  31. Chin P, Florkowski C, Begg E (2013) The performances of the Cockcroft-Gault, modification of diet in renal disease study and chronic kidney disease epidemiology collaboration equations in predicting gentamicin clearance. Ann Clin Biochem 50:546–557

    Article  CAS  PubMed  Google Scholar 

  32. Pickkers P, Darmon M, Hoste E, Joannidis M, Legrand M, Ostermann M, Prowle JR, Schneider A, Schetz M (2021) Acute kidney injury in the critically ill: an updated review on pathophysiology and management. Intensive Care Med 47(8):835–850

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vallon V (2014) Do tubular changes in the diabetic kidney affect the susceptibility to acute kidney injury? Nephron Clin Pract 127(1–4):133–138

    Article  CAS  PubMed  Google Scholar 

  34. Vallon V, Thomson SC (2012) Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Annu Rev Physiol 74:351–375

    Article  CAS  PubMed  Google Scholar 

  35. Murashima M, Nishimoto M, Kokubu M, Hamano T, Matsui M, Eriguchi M, Samejima KI, Akai Y, Tsuruya K (2019) Inflammation as a predictor of acute kidney injury and mediator of higher mortality after acute kidney injury in non-cardiac surgery. Sci Rep 9(1):20260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. das Neves W, Alves CRR, de Souza Borges AP, de Castro G Jr (2021) Serum creatinine as a potential biomarker of skeletal muscle atrophy in non-small cell lung cancer patients. Front Physiol 12:625417

    Article  PubMed  PubMed Central  Google Scholar 

  37. Drescher C, Konishi M, Ebner N, Springer J (2015) Loss of muscle mass: current developments in cachexia and sarcopenia focused on biomarkers and treatment. J Cachexia Sarcopenia Muscle 6(4):303–311

    Article  PubMed  PubMed Central  Google Scholar 

  38. Casal MA, Nolin TD, Beumer JH (2019) Estimation of kidney function in oncology: Implications for anticancer drug selection and dosing. Clin J Am Soc Nephrol 14(4):587–595

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ferreira A et al (2021) PBPK modeling and simulation of antibiotics amikacin, gentamicin, tobramycin, and vancomycin used in hospital practice. Life 11:1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shahrami B, Najmeddin F, Rouini MR, Najafi A, Sadeghi K, Amini S, Khezrnia SS, Sharifnia HR, Mojtahedzadeh M (2020) Evaluation of amikacin pharmacokinetics in critically Ill patients with intra-abdominal sepsis. Adv Pharm Bull 10(1):114–118

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JPT—conceptualization, data extraction, writting, review; MD—data extraction, writing; KM—data extraction; OB—conceptualization, data extraction; RR—data extraction; BV—data analysis, figures preparation; LP—data analysis, review; PC—conceptualization, supervision, review; ILFS—conceptualization, supervision, review; SS—data analysis, review; FLM—conceptualization, orientation, data analysis, writting, review.

Corresponding author

Correspondence to João Paulo Telles.

Ethics declarations

Ethical Approval

This study was approved by the Research Ethics Committee of AC Camargo Cancer Center (CAE 56419722.0.0000.5432).

Consent to participate

Not applicable: retrospective study.

Consent to publish

Not applicable: retrospective study.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

• A poor correlation was found between amikacin CL and 8 GFR estimating equations.

• Amikacin CL was twice slower than the predicted in patients with eGFR > 29 mL/min.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telles, J.P., Diegues, M.S., Migotto, K.C. et al. Failure to predict amikacin elimination in critically ill patients with cancer based on the estimated glomerular filtration rate: applying PBPK approach in a therapeutic drug monitoring study. Eur J Clin Pharmacol 79, 1003–1012 (2023). https://doi.org/10.1007/s00228-023-03516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-023-03516-1

Keywords

Navigation