Skip to main content

Advertisement

Log in

Analgesic potential of transdermal nicotine patch in surgery: a systematic review and meta-analysis of randomised placebo-controlled trials

  • Review
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objectives

We aimed (1) to systematically review the efficacy of transdermal nicotine patches (NP) for postoperative analgesia, (2) to establish the current quality of evidence and assist clinical decision-making on the subject, and (3) to identify methodological limitations and the need for more well-designed studies.

Materials and methods

We searched six electronic databases, protocol records, and other sources without date or language restriction until March 2022. To develop the search strategy, we formulated a clinical question by using the PICOD method. Eligibility criteria included randomised placebo-controlled trials on the analgesic potential of NP for surgical procedures. This systematic review followed the PRISMA 2020 statement, and we registered the protocol in PROSPERO (#CRD42020205956).

Results

We included 10 randomised placebo-controlled trials (535 patients). The NP administered before induction of anaesthesia and at beginning of surgery reduced the pain immediately after surgery (−0.38; 95% confidence interval [CI]: −0.73 to −0.02), and 6 h (−0.34; 95% CI: −0.68 to −0.01), 12 h (−0.43; 95% CI: −0.71 to −0.15) and 24 h (−0.35; 95%CI: −0.59 to −0.10) after surgery, compared with the placebo patch (PP) group. Sensitivity testing suggests that opioid use could underestimate NP analgesia. Late demand for the first analgesic and consumption of rescue analgesics tended to be lower in the NP group.

Conclusions

The current findings suggest, with low certainty of evidence, the analgesic potential of NP for surgical procedures.

Clinical relevance

Perioperative use of NP significantly improved postoperative pain, even when opioids were administered or prescribed. Nevertheless, the clinical relevance should be interpreted with caution, owing to the effect sizes of the summary measures and methodological issues. The analgesic potential of NP as an adjuvant therapy to regulate pain and acute inflammation may offer certain clinical advantages, thus warranting further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Howard R, Fry B, Gunaseelan V, Lee J, Waljee J, Brummett C, Campbell D Jr, Seese E, Englesbe M, Vu J (2019) Association of Opioid Prescribing With Opioid Consumption After Surgery in Michigan. JAMA surgery 154(1):e184234. https://doi.org/10.1001/jamasurg.2018.4234

    Article  PubMed  Google Scholar 

  2. Zhao H, Yang S, Wang H, Zhang H, An Y (2019) Non-opioid analgesics as adjuvants to opioid for pain management in adult patients in the ICU: A systematic review and meta-analysis. J Crit Care 54:136–144. https://doi.org/10.1016/j.jcrc.2019.08.022

    Article  CAS  PubMed  Google Scholar 

  3. Koerber HR, Belfer I, Gold MS (2019) Nicotine evoked currents in human primary sensory neurons. J Pain 20(7):810–818. https://doi.org/10.1016/j.jpain.2019.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalra R, Singh SP, Pena-Philippides JC, Langley RJ, Razani-Boroujerdi S, Sopori ML (2004) Immunosuppressive and anti-inflammatory effects of nicotine administered by patch in an animal model. Clin Diagn Lab Immunol 11(3):563–568. https://doi.org/10.1128/CDLI.11.3.563-568.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Abdrakhmanova GR, Blough BE, Nesloney C, Navarro HA, Damaj MI, Carroll FI (2010) In vitro and in vivo characterization of a novel negative allosteric modulator of neuronal nAChRs. Neuropharmacology 59(6):511–517. https://doi.org/10.1016/j.neuropharm.2010.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pathak V, Rendon IS, Lupu R, Tactuk N, Olutade T, Durham C, Stumacher R (2013) Outcome of nicotine replacement therapy in patients admitted to ICU: a randomized controlled double-blind prospective pilot study. Respir Care 58(10):1625–1629. https://doi.org/10.4187/respcare.01791

    Article  PubMed  Google Scholar 

  7. Mishriky BM, Habib AS (2014) Nicotine for postoperative analgesia: a systematic review and meta-analysis. Anesth Analg 119(2):268–275. https://doi.org/10.1213/ANE.0b013e3182a8fa7b

    Article  CAS  PubMed  Google Scholar 

  8. Ditre JW, Heckman BW, Zale EL, Kosiba JD, Maisto SA (2016) Acute analgesic effects of nicotine and tobacco in humans: a meta-analysis. Pain 157(7):1373–1381. https://doi.org/10.1097/j.pain.0000000000000572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gao B, Hierl M, Clarkin K, Juan T, Nguyen H, van der Valk M, Deng H, Guo W, Lehto SG, Matson D, McDermott JS, Knop J, Gaida K, Cao L, Waldon D, Albrecht BK, Boezio AA, Copeland KW, Harmange JC, Springer SK, McDonough SI (2010) Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptor agonists in animal models of persistent pain. Pain 149(1):33–49. https://doi.org/10.1016/j.pain.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin Res Ed) 372:n71. https://doi.org/10.1136/bmj.n71

    Article  Google Scholar 

  11. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ (Clin Res Ed) 350:g7647. https://doi.org/10.1136/bmj.g7647

    Article  Google Scholar 

  12. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174. https://doi.org/10.2307/2529310

    Article  CAS  PubMed  Google Scholar 

  13. Sterne J, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng HY, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Higgins J (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ (Clin Res Eed) 366:l4898. https://doi.org/10.1136/bmj.l4898

    Article  Google Scholar 

  14. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  15. Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy 7(1):51–61. https://doi.org/10.1258/1355819021927674

    Article  PubMed  Google Scholar 

  16. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ (Clin Res Ed) 327(7414):557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  Google Scholar 

  17. Sterne JA, Sutton AJ, Ioannidis JP, Terrin N, Jones DR, Lau J, Carpenter J, Rücker G, Harbord RM, Schmid CH, Tetzlaff J, Deeks JJ, Peters J, Macaskill P, Schwarzer G, Duval S, Altman DG, Moher D, Higgins JP (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ (Clin Res Ed) 343:d4002. https://doi.org/10.1136/bmj.d4002

    Article  Google Scholar 

  18. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (2022) Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane. Available from www.training.cochrane.org/handbook

  19. Schünemann H, Brożek J, Guyatt G, Oxman A (2013) GRADE handbook for grading quality of evidence and strength of recommendations. Updated October 2013. The GRADE Working Group. Available from guidelinedevelopment.org/handbook

  20. GRADEpro GDT: GRADEpro Guideline Development Tool [Software] (2020) McMaster University, (developed by Evidence Prime, Inc.). Available from gradepro.org

  21. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, GRADE Working Group (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ (Clin Res Ed) 336(7650):924–926

    Article  Google Scholar 

  22. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 64(4):380–382. https://doi.org/10.1016/j.jclinepi.2010.09.011

    Article  PubMed  Google Scholar 

  23. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, Brignardello-Petersen R, Carrasco-Labra A, De Beer H, Hultcrantz M, Kuijpers T, Meerpohl J, Morgan R, Mustafa R, Skoetz N, Sultan S, Wiysonge C, Guyatt G, Schünemann HJ, GRADE Working Group (2020) GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 119:126–135. https://doi.org/10.1016/j.jclinepi.2019.10.014

    Article  PubMed  Google Scholar 

  24. Habib AS, White WD, El Gasim MA, Saleh G, Polascik TJ, Moul JW, Gan TJ (2008) Transdermal nicotine for analgesia after radical retropubic prostatectomy. Anesth Analg 107(3):999–1004. https://doi.org/10.1213/ane.0b013e31816f2616

    Article  CAS  PubMed  Google Scholar 

  25. Hong D, Conell-Price J, Cheng S, Flood P (2008) Transdermal nicotine patch for postoperative pain management: a pilot dose-ranging study. Anesth Analg 107(3):1005–1010. https://doi.org/10.1213/ane.0b013e318163204f

    Article  CAS  PubMed  Google Scholar 

  26. Turan A, White PF, Koyuncu O, Karamanliodlu B, Kaya G, Apfel CC (2008) Transdermal nicotine patch failed to improve postoperative pain management. Anesth Analg 107(3):1011–1017. https://doi.org/10.1213/ane.0b013e31816ba3bb

    Article  CAS  PubMed  Google Scholar 

  27. Ali AR, Sakr SA (2009) Pre-emptive Use of Transdermal Nicotine Patch in Lumber Disc Surgery: It’s Effects on Intraoperative Anaesthetic and Analgesic Requirements, Haemodynamics and Postoperative Analgesia. Aust J Basic Appl Sci 3(2):1096–1103

    CAS  Google Scholar 

  28. Olson LC, Hong D, Conell-Price JS, Cheng S, Flood P (2009) A transdermal nicotine patch is not effective for postoperative pain management in smokers: a pilot dose-ranging study. Anesth Analg 109(6):1987–1991. https://doi.org/10.1213/ANE.0b013e3181bd1612

    Article  PubMed  Google Scholar 

  29. Nagy HIA, Elkadi HW (2014) Transdermal nicotine patch as adjunctive analgesic modality to thoracic epidural analgesia for post-thoracotomy pain. Egypt J Cardiothorac Anesth 8:75–82

    Article  Google Scholar 

  30. Esmat IM, Kassim DY (2016) Comparative study between transdermal nicotine and melatonin patches on postoperative pain relief after laparoscopic cholecystectomy, a double-blind, placebo-controlled trial. Egypt J Anaesth 32:299–307

    Article  Google Scholar 

  31. Malaithong W, Munjupong S (2017) Efficacy of a transdermal nicotine patch in pain relief after arthroscopic shoulder surgery: A randomized controlled trial. J Med Assoc Thai 100(8):901–906

    Google Scholar 

  32. Martins Filho ED, Vasconcelos C, Oliveira F, Pereira A, Ferraz Á (2018) Evaluation of nicotine patch in pain control of patients undergoing laparoscopic cholecystectomy. Revista do Colegio Brasileiro de Cirurgioes 45(3):e1756. https://doi.org/10.1590/0100-6991e-20181756

    Article  PubMed  Google Scholar 

  33. Landim FS, Laureano Filho JR, Nascimento J, do Egito Vasconcelos BC (2020) Effectiveness of nicotine patch for the control of pain, oedema, and trismus following third molar surgery: a randomized clinical trial. Int J Oral Maxillofac Surg 49(11):1508–1517. https://doi.org/10.1016/j.ijom.2019.08.013

    Article  CAS  PubMed  Google Scholar 

  34. Zevin S, Jacob P 3rd, Benowitz N (1997) Cotinine effects on nicotine metabolism. Clin Pharmacol Ther 61(6):649–654. https://doi.org/10.1016/S0009-9236(97)90099-0

    Article  CAS  PubMed  Google Scholar 

  35. Shiffman S, Dunbar MS, Benowitz NL (2014) A comparison of nicotine biomarkers and smoking patterns in daily and nondaily smokers. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 23(7):1264–1272. https://doi.org/10.1158/1055-9965.EPI-13-1014

    Article  CAS  Google Scholar 

  36. Jensen AA, Frølund B, Liljefors T, Krogsgaard-Larsen P (2005) Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem 48(15):4705–4745. https://doi.org/10.1021/jm040219e

    Article  CAS  PubMed  Google Scholar 

  37. Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Kamochi H, Suzuki N (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-kappaB phosphorylation and nuclear factor-kappaB transcriptional activity through nicotinic acetylcholine receptor alpha7. Clin Exp Immunol 146(1):116–123. https://doi.org/10.1111/j.1365-2249.2006.03169.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gurun MS, Parker R, Eisenach JC, Vincler M (2009) The effect of peripherally administered CDP-choline in an acute inflammatory pain model: the role of alpha7 nicotinic acetylcholine receptor. Anesth Analg 108(5):1680–1687. https://doi.org/10.1213/ane.0b013e31819dcd08

    Article  CAS  PubMed  Google Scholar 

  39. Hosur V, Leppanen S, Abutaha A, Loring RH (2009) Gene regulation of alpha4beta2 nicotinic receptors: microarray analysis of nicotine-induced receptor up-regulation and anti-inflammatory effects. J Neurochem 111(3):848–858. https://doi.org/10.1111/j.1471-4159.2009.06373.x

    Article  CAS  PubMed  Google Scholar 

  40. Nakamura M, Jang IS (2010) Presynaptic nicotinic acetylcholine receptors enhance GABAergic synaptic transmission in rat periaqueductal gray neurons. Eur J Pharmacol 640(1–3):178–184. https://doi.org/10.1016/j.ejphar.2010.04.057

    Article  CAS  PubMed  Google Scholar 

  41. Rowley TJ, McKinstry A, Greenidge E, Smith W, Flood P (2010) Antinociceptive and anti-inflammatory effects of choline in a mouse model of postoperative pain. Br J Anaesth 105(2):201–207. https://doi.org/10.1093/bja/aeq113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hosur V, Loring RH (2011) α4β2 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol 79(1):167–174. https://doi.org/10.1124/mol.110.066381

    Article  CAS  PubMed  Google Scholar 

  43. Nirogi R, Goura V, Abraham R, Jayarajan P (2013) α4β2* neuronal nicotinic receptor ligands (agonist, partial agonist and positive allosteric modulators) as therapeutic prospects for pain. Eur J Pharmacol 712(1–3):22–29. https://doi.org/10.1016/j.ejphar.2013.04.021

    Article  CAS  PubMed  Google Scholar 

  44. Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev Immunol 2(5):372–377. https://doi.org/10.1038/nri803

    Article  CAS  PubMed  Google Scholar 

  45. Nishibe S, Wahl MI, Hernández-Sotomayor SM, Tonks NK, Rhee SG, Carpenter G (1990) Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation. Science (New York, N.Y.) 250(4985):1253–1256. https://doi.org/10.1126/science.1700866

    Article  CAS  PubMed  Google Scholar 

  46. Arneric SP, Sullivan JP, Decker MW, Brioni JD, Bannon AW, Briggs CA, Donnelly-Roberts D, Radek RJ, Marsh KC, Kyncl J (1995) Potential treatment of Alzheimer disease using cholinergic channel activators (ChCAs) with cognitive enhancement, anxiolytic-like, and cytoprotective properties. Alzheimer Dis Assoc Disord 9(Suppl 2):50–61. https://doi.org/10.1097/00002093-199501002-00009

    Article  PubMed  Google Scholar 

  47. James JR, Nordberg A (1995) Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: emphasis on Alzheimer’s disease and Parkinson’s disease. Behav Genet 25(2):149–159. https://doi.org/10.1007/BF02196924

    Article  CAS  PubMed  Google Scholar 

  48. Birtwistle J, Hall K (1996) Does nicotine have beneficial effects in the treatment of certain diseases? Br J Nurs (Mark Allen Publishing) 5(19):1195–1202. https://doi.org/10.12968/bjon.1996.5.19.1195

    Article  CAS  Google Scholar 

  49. Salomon AR, Marcinowski KJ, Friedland RP, Zagorski MG (1996) Nicotine inhibits amyloid formation by the beta-peptide. Biochemistry 35(42):13568–13578. https://doi.org/10.1021/bi9617264

    Article  CAS  PubMed  Google Scholar 

  50. Trauth JA, Seidler FJ, McCook EC, Slotkin TA (1999) Adolescent nicotine exposure causes persistent upregulation of nicotinic cholinergic receptors in rat brain regions. Brain Res 851(1–2):9–19. https://doi.org/10.1016/s0006-8993(99)01994-0

    Article  CAS  PubMed  Google Scholar 

  51. Sopori ML, Kozak W, Savage SM, Geng Y, Soszynski D, Kluger MJ, Perryman EK, Snow GE (1998) Effect of nicotine on the immune system: possible regulation of immune responses by central and peripheral mechanisms. Psychoneuroendocrinology 23(2):189–204. https://doi.org/10.1016/s0306-4530(97)00076-0

    Article  CAS  PubMed  Google Scholar 

  52. McNicol ED, Ferguson MC, Hudcova J (2015) Patient controlled opioid analgesia versus non-patient controlled opioid analgesia for postoperative pain. Cochrane Database Syst Rev 2015(6):CD003348. https://doi.org/10.1002/14651858.CD003348.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  53. Jamner LD, Girdler SS, Shapiro D, Jarvik ME (1998) Pain inhibition, nicotine, and gender. Exp Clin Psychopharmacol 6(1):96–106. https://doi.org/10.1037//1064-1297.6.1.96

    Article  CAS  PubMed  Google Scholar 

  54. Melnyk M, Casey RG, Black P, Koupparis AJ (2011) Enhanced recovery after surgery (ERAS) protocols: Time to change practice? Can Urol Assoc J 5(5):342–348. https://doi.org/10.5489/cuaj.11002

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schulz KF, Altman DG, Moher D, CONSORT Group (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ (Clin Res Ed) 340:c332. https://doi.org/10.1136/bmj.c332

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the following Brazilian funding agencies: Coordination for the Improvement of Higher Education (CAPES), National Council for Scientific and Technological Development (CNPq) and Science and Technology Support Foundation of the State of Pernambuco (FACEPE). We would also like to thank the University of Pernambuco (UPE) and São Paulo State University (UNESP) for all their support.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contribution to the conception and design of the manuscript. DSB, AFMV, and BCEV performed the literature search and interpretation of the data. All authors drafted the work and revised it critically for important intellectual content. All authors agree to be accountable for all aspects of the study design and its content. All authors approved the final submitted version.

Corresponding author

Correspondence to Belmiro Cavalcanti do Egito Vasconcelos.

Ethics declarations

Ethical approval

No ethical approval was required for this study since it was a systematic review.

Informed consent

No informed consent was required.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Barbirato, D., de Melo Vasconcelos, A.F., Dantas de Moraes, S.L. et al. Analgesic potential of transdermal nicotine patch in surgery: a systematic review and meta-analysis of randomised placebo-controlled trials. Eur J Clin Pharmacol 79, 589–607 (2023). https://doi.org/10.1007/s00228-023-03475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-023-03475-7

Keywords

Navigation