Skip to main content
Log in

Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: Emphasis on Alzheimer's disease and Parkinson's disease

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

As neurodegenerative disorders are better characterized, the importance of genetic and environmental interactions is becoming more evident. Among the neurodegenerative disorders, Alzheimer's disease and Parkinson's disease are both characterized by large losses of nicotinic binding sites in brain. In addition, losses in nicotinic receptors occur during normal aging. Chronic administration of nicotine in man or experimental animals increases the number of nicotinic receptors in brain. Nicotine has been shown to possess some neuroprotective properties for both cholinergic and dopaminergic neurons. These neuroprotective properties, when better understood, may provide important information on normal aging and neurodegenerative disorder related neuronal cell death. Understanding the functional aspects of neuronal nicotinic receptor subtypes may lead to successful therapeutic treatments or disease preventative strategies for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adem, A., Nordberg, A., Bucht, G., and Winblad, B. (1986). Nicotinic and muscarinic binding sites on lymphocytes from Alzheimer patients. In Fisher, A., Hanin, I., and Lachman, C. (eds.),Alzheimer's and Parkinson's Disease: Strategies for Research and Development, Plenum Press, New York, pp. 337–344.

    Google Scholar 

  • Aquilonius, S. (1989). Parkinson's disease-etiology and smoking.Prog. Brain Res. 79:329–333.

    Google Scholar 

  • Araujo, D. M., Lapchak, P. A., Collier, B., and Quirion, R. (1989). N-[3H]Methylcarbamylcholine binding sites in the rat and human brain: Relationship to functional nicotinic autoreceptors and alterations in Alzheimer's disease.Prog. Brain Res. 79:345–352.

    Google Scholar 

  • Arneric, S. P., Sullivan, J. P., and Williams, M. (1995). Neuronal nicotinic acetylcholine receptors-novel targets for CNS therapeutics. In Bloom, F. E., and Kupfer, D. J. (eds.),Psychopharmacology: The Fourth Generation of Progress, Raven Press, New York.

    Google Scholar 

  • Ashton, H., Marsh, V., Millman, J., Rawlins, M., Stepney, R., Telford, R., and Thompson, J. W. (1979). Patterns of behavioral, autonomic, and electrophysiological response to cigarette smoking and nicotine in man. In Remond, A., and Izard, C. (eds.),Electrophysiological Effects of Nicotine, Elsevier, New York.

    Google Scholar 

  • Aubert, I., Araujo, D. M., Cecyre, D., Robitaille, Y., Gauthier, S., and Quirion, R. (1992). Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer's and Parkinson's diseases.J. Neurochem. 58:529–541.

    Google Scholar 

  • Barclay, L., and Kheyfets, S. (1988). Tobacco use in Alzheimer's disease.Alzheimer's Dis. Assoc. Disord. 2:172.

    Google Scholar 

  • Baron, J. A. (1986). Cigarette smoking and Parkinson's disease.Neurology 36:1490–1496.

    Google Scholar 

  • Baumann, R. J., Jameson, H. D., McKean, H. E., Haack, D. G., and Weisberg, L. M. (1980). Cigarette smoking and Parkinson disease: A comparison of cases with matched neighbors.Neurology 30:839–843.

    Google Scholar 

  • Benwell, M. E. M., Balfour, D. J. K., and Anderson, J. M. (1988). Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain.J. Neurochem. 50:1243–1247.

    Google Scholar 

  • Bertrand, D., Ballivet, M., and Rungger, D. (1990). Activation and blocking of neuronal nicotinic acetylcholine receptor reconstituted in xenopus oocytes.Proc. Natl. Acad. Sci. 87:1993–1997.

    Google Scholar 

  • Bertrand, D., Bertrand, S., and Ballivet, M. (1992). Pharmacological properties of the homomeric α7 receptor.Neurosci. Lett. 146:87–90.

    Google Scholar 

  • Bogdanovic, N., Nilsson, L., Adem, A., Winblad, B., and Bergström, L. (1993). Decrease of somatostatin receptor binding in the rat cerebral cortex after ibotenic acid lesion of the nucleus basalis magnocellularis: A quantitative autoradiographic study.Brain Res. 628:31–38.

    Google Scholar 

  • Brenner, D. E., Kukull, W. A., van Belle, G., Bowen, J. D., McCormick, W. C., Teri, L., and Larson, E. B. (1993). Relationship between cigarette smoking and Alzheimer's disease in a population-based case-control study.Neurology 43:293–300.

    Google Scholar 

  • Calne, D. B., McGeer, E., Eisen, A., and Spencer, P. (1986). Alzheimer's disease, Parkinson's disease, and motoneurone disease: Abiotropic interaction between aging and environment?Lancet Nov. 8:1067–1070.

    Google Scholar 

  • Carson, D. A., and Ribeiro, J. M. (1993). Apoptosis and disease.Lancet 341:1251–1254.

    Google Scholar 

  • Changeux, J., Girqudat, J., and Dennis, M. (1987). The nicotinic acetylcholine receptor: Molecular architecture of a ligand-regulated ion channel.TIPS 8:459–465.

    Google Scholar 

  • Chini, B., Tarroni, P., Rubboli, F., Raimondi, E., and Clementi, F. (1991), α3, β4, and α5 human nicotinic receptor subunits genes: Genetic linkage, chromosomal localization and differential expression in neuronal and nonneuronal cells.Biol. Psychiatry 2:809–812.

    Google Scholar 

  • Citron, M. T., Olterdorf, C., and Hass, S. (1992). Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increase β-protein production.Nature 360:672–674.

    Google Scholar 

  • Clark, R. F., and Goate, A. M. (1993). Molecular genetics of Alzheimer's disease.Arch. Neurol. 50:1164–1172.

    Google Scholar 

  • Collins, A. C., and Marks, M. J. (1989). Chronic nicotine exposure and brain nicotinic receptors-influence of genetic factors.Prog. Brain Res. 79:137–146.

    Google Scholar 

  • Collins, A. C., and Marks, M. J. (1991). Progress towards the development of animal models of smoking-related behaviors.J. Addict. Dis. 10:109–126.

    Google Scholar 

  • Collins, M. K. L., Perkins, G. R., Rodriguez-Tarduchy, G., Nieto, M. A., and Lopez-Rivas, A. (1993). Growth factors as survival factors: Regulation of apoptosis.Bioassays 16(2):133–138.

    Google Scholar 

  • Copeland, J. R., Adem, A., Jacob, P., III, and Nordberg, A. (1991). A comparison of the binding of nicotine and nornicotine stereoisomers to nicotine binding sites in rat brain cortex.Naunyn-Schmiedeberg's Arch. Pharmacol. 343:123–127.

    Google Scholar 

  • Deneris, E. S., Connolly, J., Rogers, S. W., and Duvoisin, R. (1991). Pharmacological and functional diversity of neuronal nicotinic acetylcholine receptors.TIPS 12:34–40.

    Google Scholar 

  • Dies, R., and Reznikoff, M. (1969). Personality and smoking patterns in a twin population.J. Proj. Tech. Pers. Assess. 33:457–463.

    Google Scholar 

  • Dunnett, S. B., Whishaw, I. Q., Jones, G. H., and Bunch, S. T. (1987). Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats.Neuroscience 20(2):653–669.

    Google Scholar 

  • Falkeborn, Y., Larsson, C., Nordberg, A., and Slanina, P. (1983). A comparison of the regional ontogenesis of nicotine-and muscarine-like binding sites in mouse brain. Internat.J. Dev. Neurosci. 1:289–296.

    Google Scholar 

  • Fisher, R. A. (1958). Cancer and smoking.Nature 182:596.

    Google Scholar 

  • Flynn, D. D., and Marsh, D. C. (1986). Characterization of L-(3H-nicotine) binding in human cerebral cortex; Comparison between Alzheimer's disease and the normal.J. Neurochem. 47:1948–1954.

    Google Scholar 

  • Fratiglioni, L. (1993). Epidemiology of Alzheimer's disease: Issues of etiology and validity.Acta Neurol. Scand. (Suppl. 145)87:1–70.

    Google Scholar 

  • Friedland R. P. (1994). Epidemiology and neurobiology of the multiple determinants of Alzheimer's disease.Neurobiol. Aging 15(2):239–241.

    Google Scholar 

  • Fuxe, K., Andersson, K., Eneroth, P., Jansson, A., von Euler, G., Tinner, B., Bjelke, B., and Agnati, L. F. (1989). Neurochemical mechanisms underlying the neuroendocrine actions of nicotine: Focus on the plasticity of central cholinergic nicotinic receptors.Prog. Brain. Res. 79:197–207.

    Google Scholar 

  • Fuxe, K., Janson, A. M., Jansson, A., Andersson, K., Eneroth, P., and Agnati, L. F. (1990). Chronic nicotine treatment increases dopamine levels and reduces dopamine utilization in substantia nigra and in surviving forebrain dopamine nerve terminal systems after a partial di-mesencephalic hemitransection.Naunyn-Schmiedeberg's Arch. Pharmacol. 341:171–181.

    Google Scholar 

  • Giorguieff, M. F., le Floc'h, M. L., Glowinski, J., and Besson, M. J. (1977). Involvement of cholinergic presynaptic receptors of nicotinic and muscarinic types in the control of the spontaneous release of dopamine from striatal dopaminergic terminals in the rat.J. Pharmacol. Exp. Ther. 200:535–544.

    Google Scholar 

  • Goate, A., Chartier-Harlin, M. C., and Mullan, M. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familiar Alzheimer's disease.Nature 349:704–706.

    Google Scholar 

  • Golbe, L. I., Cody, R. A., and Duvoisin, R. C. (1986). Smoking and Parkinson's disease, search for a dose-response relationship.Arch. Neurol. 43:774–778.

    Google Scholar 

  • Goldman, D., Deneris, E., Luyten, W., Kochhar, A., Patrick, J., and Heinemann, S. (1987). Members of a nicotinic acetylcholine receptor gene family are expressed in different regions of the mammalian central nervous system.Cell 48:965–973.

    Google Scholar 

  • Grady, S. R., Marks, J. J., and Collins, A. C. (1994). Desensitization of nicotine-stimulated [3H]dopamine release from mouse striatal synaptosomes.J. Neurochem. 62:1390–1398.

    Google Scholar 

  • Graves, A. B., van Duijn, C. M., Chandra, V., Fratiglioni, L., Heyman, A., Jorn, A. F., Kokmen, E., Kondo, K., Mortimer, J. A., Rocca, W. A., Shalat, S. L., Soininen, H., and Hofman, A. (1991). Alcohol and tobacco consumption as risk factors for Alzheimer's disease: A collaborative re-analysis of case-control studies.Int. J. Epidemiol. 20(2)(Suppl. 2):48–57.

    Google Scholar 

  • Greenamyre, J. T., and Young, A. B. (1989). Excitatory amino acids and Alzheimer's disease.Neurobiol. Aging 10:593–602.

    Google Scholar 

  • Grenhoff, J., Janson, A. M., Svensson, T. H., and Fuxe, K. (1991). Chronic continuous nicotine treatment causes decreased burst firing of nigral dopamine neurons in rats partially hemitransected at the meso-diencephalic junction.Brain Res. 562:347–351.

    Google Scholar 

  • Grunberg, N. E., Winders, S. E., and Wevers, M. E. (1991). Gender differences in tobacco use.Health Psychol. 10:143–153.

    Google Scholar 

  • Haack, D. G., Baumann, R. J., McKean, H. E., Jameson, H. D., and Turbek, J. A. (1981). Nicotine exposure and Parkinson disease.Am. J. Epidemiol. 114(2):191–200.

    Google Scholar 

  • Hanauer, S. B. (1994). Nicotine for colitis-The smoke has not yet cleared.N. Engl. J. Med. 330(12):856–857.

    Google Scholar 

  • Hardy, J. A., et al. (1985). Transmitter deficits in Alzheimer's disease.Neurochem. Int. 7:545–563.

    Google Scholar 

  • Härfstrand, A., Adem, A., Fuxe, K., Agnati, L., Andersson, K., and Nordberg, A. (1988). Distribution of nicotinic cholinergic receptors in the rat telencephalon and diencephalon: A quantitative receptor autoradiographical study using3H-nicotine.Acta Physiol. Scand. 132:1–14.

    Google Scholar 

  • Heckers, S., Ohtake, T., Wiley, R. G., Lappi, D. A., Geula, C., and Mesulam, M. M. (1994). Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor.J. Neurosci. 14(3):1271–1289.

    Google Scholar 

  • Heishman, S. J., Snyder, F. R., and Henningfield, J. E. (1993). Performance, subjective, and physiological effects of nicotine in non-smokers.Drug Alcohol Depend. 34:11–18.

    Google Scholar 

  • Hindmarch, I., Kerr, J. S., and Sherwood, N. (1990). Effects of nicotine gum on psychomotor performance in smokers and non-smokers.Psychopharmacology 100:535–541.

    Google Scholar 

  • Hofman, A., Schulte, W., Tanja, T. A., van Duijn, C. M. Haaxma, R., Lameris, A. J., Otten, V. M., and Saan, R. J. (1989). History of dementia and Parkinson's disease in 1st-degree relatives of patients with Alzheimer's disease.Neurology 39:1589–1592.

    Google Scholar 

  • James, J. R., Villanueva, H. F., Johnson, J. H., Arezo, S., and Rosecrans, J. A. (1994). Evidence that nicotine can acutely desensitize central nicotinic acetylcholinergic receptors.Psychopharmacology 114(3):456–462.

    Google Scholar 

  • Janson, A. M., and Moller, A. (1993). Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: An analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat.Neurosci. 57:931–941.

    Google Scholar 

  • Janson, A. M., Fuxe, K., Kitayama, I., Härfstrand, A., and Agnati, L. F. (1988). Morphometric studies on the protective action of nicotine on the substantia nigra dopamine nerve cells after partial hemitransection in the male rat.Neurosci. Lett. Suppl. 26:S.88.

    Google Scholar 

  • Janson, A. M., Fuxe, K., Agnati, L. F., Jansson, A., Bjelke, B., Sunström, E., Andersson, K., Härfstrand, A., Goldstein, M., and Owman, C. (1989). Protective effects of chronic nicotine treatment on lesioned nigrostriatal dopamine neurons in the male rat.Prog. Brain Res. 79:257–265.

    Google Scholar 

  • Jarvik, M. E. (1991). Beneficial effects of nicotine.Br. J. Addict. 86:571–575.

    Google Scholar 

  • Jick, H., and Walker, A. M. (1983). Cigarette smoking and ulcerative colitis.N. Engl. J. Med. 308(5):261–263.

    Google Scholar 

  • Jones, R. A. (1986). Individual differences in nicotine sensitivity.Addict. Behav. 11:435–438.

    Google Scholar 

  • Katz, B., and Thesleff, S. (1957). A study of the “desensitization” produced by acetylcholine at the motor end-plate.J. Physiol. 138:63–80.

    Google Scholar 

  • Kessler, I. I., and Diamond, E. L. (1971). Epidemiologic studies of Parkinson's disease I. Smoking and Parkinson's disease: A survey and explanation hypothesis.Am. J. Epidemiol. 94(1):16–25.

    Google Scholar 

  • Kinney, H. C., O'Donnell, T. J., Kriger, P., and White, W. F. (1993). Early developmental changes in [3H]nicotine binding in the human brainstem.J. Neurosci. 55(4):1127–1138.

    Google Scholar 

  • Larsson, C., Nordberg, A., Falkeborn, Y., and Lundberg, P. Å. (1985). Regional [3H]acetylcholine and [3H]nicotine binding in developing mouse brain. Internat.J. Dev. Neurosci. 3:667–671.

    Google Scholar 

  • Larsson, C., Nilsson, L., Halen, A., and Nordberg, A. (1987). Subchronic treatment of rats with nicotine: Effects on tolerance and on [3H]acetylcholine and [3H]nicotine binding in the brain.Drug Alcohol Depend. 17:37–45.

    Google Scholar 

  • Loo, D. T., Copani, A., Pike, C. J., Whittemore, E. R., Walencewicz, A. J., and Cotman, C. W. (1993). Apoptosis is induced by β-amyloid in cultured central nervous system neurons.Proc. Natl. Acad. Sci. USA 90:7951–7955.

    Google Scholar 

  • Lopez-Garcia, J. C., Fernandez-Ruiz, J., Escobar, M. L., Bermudez-Rattoni, F., and Tapia, R. (1993). Effects of excitotoxic lesions of the nucleus basalis magnocellularis on conditioned taste aversion and inhibitory avoidance in the rat.Pharmacol. Biochem. Behav. 45:147–152.

    Google Scholar 

  • Luetje, C. W., and Patrick, J. (1991). Both α-and β-subunits contribute to the agonist sensitivity of neuronal nicotinic acetylcholine receptors.J. Neurosci. 11(3):837–845.

    Google Scholar 

  • Luetje, C. W., Patrick, J., and Seguela, P. (1990). Nicotine receptors in the mammalian brain.FASEB J. 4:2753–2760.

    Google Scholar 

  • Marks, M. J., Romm, E., Gaffney, D. K., and Collins, A. C. (1986a). Nicotine-induced tolerance and receptor changes in four mouse strains.J. Pharmacol. Exp. Ther. 237(3):809–819.

    Google Scholar 

  • Marks, M. J., Stitzel, J. A., and Collins, A. C. (1986b). Doseresponse analysis of nicotine tolerance and receptor changes in two inbred mouse strains.J. Pharmacol. Exp. Ther. 239(2):358–364.

    Google Scholar 

  • Marttila, R. J., and Rinne, U. K. (1980). Smoking and Parkinson's disease.Acta Neurol. Scand. 62:322–325.

    Google Scholar 

  • Mayeux, R., Tang, M., Marder, K., Cote, L. J., and Stern, Y. (1994). Smoking and Parkinson's disease.Move. Disord. 9(2):207–212.

    Google Scholar 

  • Miner, L. L., Marks, M. J., and Collins, A. C. (1984). Classical genetic analysis of nicotine-induced seizures and nicotinic receptors.J. Pharmacol. Exp. Ther. 231(3):545–554.

    Google Scholar 

  • Mullan, M., Crawford F., and Axelman, K. (1992). A new mutation in APP demonstrates that the pathogenic mutations for probable Alzheimer's disease from the β-amyloid sequence.Nature Genet. 1:345–347.

    Google Scholar 

  • Neary, D., Snowden, J. S., Mann, D. M. A., Bowen, D. M., Sims, N. R., Northen, B., Yates, P. O., and Davison, A. N. (1986). Alzheimer's disease: A correlative study.J. Neurol. Neurosurg. Psychiat. 49:229–237.

    Google Scholar 

  • Nee, L. E., Eldridge, R., and Sunderlant, T. (1987). Dementia of the Alzheimer type: Clinical and family study of 22 twin pairs.Neurology 37:359–363.

    Google Scholar 

  • Nefzger, M. D., Quadfasel, F. A., and Darl, V. C. (1968). A retrospective study of smoking in Parkinson's disease.Am. J. Epidemiol. 88:149–158.

    Google Scholar 

  • Newhouse, P. A., and Hughes, J. R. (1991). The role of nicotine and nicotinic mechanisms in neuropsychiatric disease.Br. J. Addict. 86:521–526.

    Google Scholar 

  • Nordberg, A. (1992). Neuroreceptor changes in Alzheimer's disease.Cerbovasc. Brain Metab. Rev. 4:303–328.

    Google Scholar 

  • Nordberg, A. (1993). Neuronal nicotinic receptors and their implications in aging and neurodegenerative disorders in mammals.J. Reprod. Fert. Suppl. 46:145–154.

    Google Scholar 

  • Nordberg, A., and Winblad, B. (1986a). Brain nicotinic and muscarinic receptors in normal aging and dementia. In Fisher, A., and Hanin, I. (eds.), Alzheimer's and Parkinson's disease-Strategies for research and development.Advances in Behavioural Biology, Plenum Press, New York, Vol. 29, pp. 95–108.

    Google Scholar 

  • Nordberg, A., and Winblad, B. (1986b). Reduced number of3H-nicotine and3H-acetylcholine binding sites in the frontal cortex of Alzheimer brains.Neurosci. Lett. 72:115–119.

    Google Scholar 

  • Nordberg, A., Wahlström, G., Arnelo, U., and Larsson, C. (1985). Effect of long-term nicotine treatment on [3H]-nicotine binding sites in the rats brain.Drug Alcohol Depend. 16:9–17.

    Google Scholar 

  • Nordberg, A., Adem, A., Nilsson, L., Romanelli, L., and Zhang, X. (1988). Heterogeneous cholinergic nicotinic receptors in the CNS. In Clementi, F., Botti, C., and Sher, E. (eds.),Nicotinic Acetylcholine Receptors in the Nervous System, NATO series H, Springer-Verlag, New York, pp. 331–350.

    Google Scholar 

  • Nordberg, A., Fuxe, K., Holmstedt, B., and Sundwall, A. (1989a). Nicotinic receptors in the CNS-their role in synaptic transmission.Prog. Brain Res. 79:1–366.

    Google Scholar 

  • Nordberg, A., Nilsson-Håkansson, L., Adem, A., Hardy, J., Alafuzoff, I., Lai, Z., Herrera-Marschitz, M., and Winblad, B. (1989b). The role of nicotinic receptors in the pathophysiology of Alzheimer's disease.Prog. Brain Res 79:353–362.

    Google Scholar 

  • Nordberg, A., Hartvig, P., Lilja, A., Viitanen, M., Amberla, K., Lundqvist, H., Andersson, Y., Ulin, J., Winblad, B., and Långström, B. (1990). Decreased uptake and binding of11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography.J. Neural Trans. 2:215–224.

    Google Scholar 

  • Nordberg, A., Zhang, X., Fredriksson, A., and Eriksson, P. (1991). Neonatal nicotine exposure induces permanent changes in brain nicotinic receptors and behaviour in adult mice.Dev. Brain Res. 63:201–207.

    Google Scholar 

  • Nordberg, A., Alafuzoff, I., and Winblad, B. (1992). Nicotinic and muscarinic subtypes in the human brain: Changes with aging and dementia.J. Neurosci. Res. 31:103–111.

    Google Scholar 

  • Nordberg, A., Lija, A., Lundqvist, H., Hartvig, P., Amberla, K., Viitanen, M., Warpman, U., Johansson, M., Hellström-Lindahl, E., Bjurling, P., Fasth, K. J., Långström, B., and Winblad, B. (1992). Tacrine restores cholinergic nicotinic receptors and glucose metabolism in Alzheimer patients as visualized by positron emission tomography.Neurobiol. Aging 13:747–758.

    Google Scholar 

  • Nordberg, A., Lundqvist, H., Hartvig, P., Lilja, A., and Långström, B. (1995). Kinetic analysis of regional (S)(−)11C-nicotine binding in normal and Alzheimer brains in vivo assessment using positron emission tomography.Alzheimer Dis. Assoc. Disord. (in press).

  • Nybäck, H., Nordberg, A., Långström, B., Halldin, C., Hartvig, P., Åhlin, A., Swahn, C.-G., and Sedvall, G. (1989). Attempts to visualize nicotinic receptors in brain of monkey and man by positron emission tomography.Prog. Brain Res. 79:313–319.

    Google Scholar 

  • Ochoa, E. L. M., Chattopadbyay, A., and McNamee, M. G. (1989). Desensitization of the acetylcholine receptor: Molecular mechanisms and effect of modulators.Cell. Mol. Neurobiol. 9:141–177.

    Google Scholar 

  • Owman, C., Fuxe, K., Janson, A. M., and Kåhrström, J. (1989). Studies of protective actions of nicotine on neuronal and vascular functions in the brain of rats: Comparison between sympathetic noradrenergic and mesostriatal dopaminergic fiber systems, and the effect of a dopamine agonist.Prog. Brain Res. 79:267–276.

    Google Scholar 

  • Page, K. J., Everitt, B. J., Robbins T. W., Marston, H. M., and Wilkinson, L. S. (1991). Dissociable effects on spatial maze and passive avoidance acquisition and retention following ampa-and ibotenic acid-induced excitotoxin lesions of the basal forebrain in rats: Differential dependence on cholinergic neuronal loss.Neuroscience 43(2/3):457–472.

    Google Scholar 

  • Parazzini, F., Vecchia, C. L., Bocciolone, L., and Franceschi, S. (1991). The epidemiology of endometrial cancer.Gynecol. Oncol. 41:1–16.

    Google Scholar 

  • Pedersen, N. (1981). Twin similarity for usage of common drugs.Twin Research 3: Epidemiological and Clinical Studies. Alan R. Liss, New York, pp. 53–59.

    Google Scholar 

  • Perkins, K. A., Grobe, J. E., Fonte, C., and Breus, M. (1992). “Paradoxical” effects of smoking on subjective stress vs. cardiovascular arousal in males and females.Pharmacol. Biochem. Behav. 42:301–311.

    Google Scholar 

  • Perkins, K. A., Epstein, L. H., Brobe, J., and Fonte, C. (1994). Tobacco abstinence, smoking cues, and the reinforcing value of smoking.Pharmacol. Biochem. Behav. 47:107–112.

    Google Scholar 

  • Perry, E. K., Pery, R., Smith, C. J., Dick, D. J., Candy, J. M., Edwardson, J. A., Fairbairn, A., and Blessed, G. (1987). Nicotinic abnormalities in Alzheimer's and Parkinson's diseases.J. Neurosurg. Psychiatry 50:806–809.

    Google Scholar 

  • Prasad, C., Ikegami, H., Shimizu, I., and Onaivi, E. S. (1994). Chronic nicotine intake decelerates aging of nigrostriatal dopaminergic neurons.Life Sci. 54(16):1169–1184.

    Google Scholar 

  • Prince, M., Cullen, M., and Mann, A. (1994). Risk factors for Alzheimer's disease and dementia: A case-control study based on the MRC elderly hypertension trial.Neurology 44:97–104.

    Google Scholar 

  • Raaschou-Nielsen, E. (1960). Smoking habits in twins.Danish Med. Bull. 7(3):82–88.

    Google Scholar 

  • Raimondi, E., Rubboli, F., Moralli, D., Chinin, B., Fornasari, D., Tarroni, P., DeCarli, L., and Clementi, F. (1991). Chromosomal localization and physical linkage of the gene encoding the human 3, 5 and β4 neuronal nicotinic receptor subunits.Genomics 12:849–850.

    Google Scholar 

  • Rajput, A. H., Offord, K. P., Beard, M., and Kurland, L. T. (1987). A case-control study of smoking habits, dementia, and other illnesses in idiopathic Parkinson's disease.Neurology 37:226–232.

    Google Scholar 

  • Riggs, J. E. (1992). Cigarette smoking and Parkinson's disease: The illusion of a neuroprotective effect.Clin. Neuropharmacol. 15(2):88–99.

    Google Scholar 

  • Romanelli, L., Öhman, B., Adem, A., and Nordberg, A. (1988). Subchronic treatment of rat with nicotine: Interconversion of nicotine receptor subtypes in brain.Eur. J. Pharmacol. 148:289–291.

    Google Scholar 

  • Sahakian, B. J., and Coull, J. T. (1994). Nicotine and tetrahydroaminoacradine-Evidence for improved attention in patients with dementia of the Alzheimer type.Drug Dev. Res. 31(1):80–88.

    Google Scholar 

  • Schröder, H., Biacobini, E., Struble, R. G., Luiten, P. G. M., Van der Zee, E. A., Zilles, K., and Strosberg, A. D. (1991). Muscarinic cholinoreceptive neurons in the frontal cortex in Alzheimer's disease.Brain Res. Bull. 27:631–636.

    Google Scholar 

  • Schulz, D. W., Kuchel, G. A., and Zigmond, R. E. (1989). Neuronal bungarotoxin blocks the nicotinic stimulation of endogenous dopamine release from rat striatum.Neurosci. Lett. 98:310–316.

    Google Scholar 

  • Schulz, D. W., Kuchel, G. A., and Zigmond, R. E. (1993). Decline in response to nicotine in aged rat striatum: Correlation with a decrease in a subpopulation of nicotinic receptors.J. Neurochem. 61:2225–2232.

    Google Scholar 

  • Slotkin, T. A., Orband-Miller, L., and Queen, K. L. (1987). Development of [3H]nicotine binding sites in brain.J. Pharmacol. Exp. Ther. 233:361–368.

    Google Scholar 

  • Smolen, A., and Marks, M. J. (1991). Genetic selections for nicotine and cocaine sensitivity in mice.J. Addict. Dis. 10:7–28.

    Google Scholar 

  • Spencer, P. S., Nunn P. B., Hugon, J., Ludolph, A. C., Ross, S. M., Roy, D. N., and Robertson, R. C. (1987). Guam amyotrophic lateral sclerosis-Parkinsonism-dementia linked to a plant excitant neurotoxin.Science 237:517–522.

    Google Scholar 

  • Sugaya, K., Giacobini, E., and Chiappinelli, V. A. (1990). Nicotinic acetylcholine receptor subtypes in human frontal cortex: Changes in Alzheimer's disease.J. Neurosci. Res. 27:349–359.

    Google Scholar 

  • Sumikawa, K., and Miledi, R. (1989). Change in desensitization of cat muscle acetylcholine receptor caused by coexpression of Torpedo acetylcholine receptor subunits in Xenopus oocytes.Proc. Natl. Acad. Sci. USA 86(1):367–371.

    Google Scholar 

  • Treves, T. A., Chandra, V., and Korczyn, A. D. (1993a). Parkinson's and Alzheimer's diseases: Epidemiological Comparison.Neuroepidemiology 12:336–344.

    Google Scholar 

  • Treves, T. A., Chandra, V., and Korczyn, A. D. (1993b). Parkinson's and Alzheimer's diseases: Epidemiological comparison.Neuroepidemiology 12:345–349.

    Google Scholar 

  • van Duijn, C. M., and Hofman, A. (1991). Relation betwen nicotine intake and Alzheimer's disease.Br. Med. J. 302:1491–1494.

    Google Scholar 

  • van Duijn, C. M., and Hofman, A. (1992). Risk factors for Alzheimer's disease: The EURODEM collaborative reanalysis of case-control studies.Neuroepidemiology 11(Suppl 1):106–113.

    Google Scholar 

  • Vaux, D. L., Haecker, G., and Strasser, A. (1994). An evolutionary perspective on apoptosis.Cell 76:777–779.

    Google Scholar 

  • Villanueva, H. F., Arezo, S., and Rosecrans, J. A. (1992). Preliminary studies on the in vivo desensitization of central nicotinic receptors by (−)-nicotine. InEffects of Nicotine on Biological Systems, Advances in Pharmacological Sciences, Birkhäuser Verlag, Basel, pp. 355–359.

    Google Scholar 

  • Wagster, M. V., Whitehouse, P. J., Walker, L. C., Kellar, K. J., and Price, D. L. (1990). Laminar organization and agerelated loss of cholinergic receptors in temporal neocortex of rhesus monkey.J. Neurosci. 10:2879–2885.

    Google Scholar 

  • Ward, C. D., Duvoisin, R. C., Ince, S. E., Nutt, J. D., Eldridge, R., and Calne, D. B. (1983). Parkinson's disease in 65 pairs of twins and in a set of quadruplets.Neurology 33: 815–824.

    Google Scholar 

  • Wevers, A., Jeske, A., Lobron C. H., Birsch, C. H., Heinemann, S., Maelicke, S., Schröder, R. and Schröder, H. (1994). Cellular distribution of nicotinic acetylcholine receptor subunit mRNAs in the human cerebral cortex as revealed by non-isotopic in situ hybridization.Mol. Brain Res. 25:122–128.

    Google Scholar 

  • Whitehouse, P. J., Martino, A. M., Autuono, P. G., Lowenstein, P. R., Coyle, J. T., Price, D. L., and Kellar, K. J. (1986). Nicotinic acetylcholine binding sites in Alzheimer's brain.Brain Res. 371:146–151.

    Google Scholar 

  • Whitehouse, P. J., Martino, A. M., Wagster, M. V., Price, D. L., Mayeux, R., Attack, J. R., and Kellar, K. J. (1988). Reduction in3H-nicotinic acetylcholine binding in Alzheimer's and Parkinson's disease: An autoradiographical study.Neurology 38:720–723.

    Google Scholar 

  • Wonnacott, S., Russell, M. A. H., and Stolerman, I. P. (1990).Nicotine Psychopharmacology-Molecular, Cellular and Behavioural Aspects, Oxford University Press, Oxford.

    Google Scholar 

  • Wright, S. C., Zhong, J., Zheng, H., and Larrick, J. W. (1993). Nicotine inhibition of apoptosis suggests a role in tumor promotion.FASEB J. 7:1045–1051.

    Google Scholar 

  • Zaimis, E., and Heads, S. (1976). In Zaimis, E. (ed.),Handbook of Experimental Pharmacology, Neuromuscular Junction, Vol. 42, Springer, Berlin, pp. 365–419.

    Google Scholar 

  • Zhang, X., Wahlström, G., and Nordberg, A. (1990). Influence of development and aging in nicotinic receptor subtypes in rodent brain.Int. J. Dev. Neurosci. 8:715–721.

    Google Scholar 

  • Zhang, X., Gong, Z-H., and Nordberg, A. (1994). Effects of chronic treatment with (+) and (−) nicotine on nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors in rat brain.Brain Res. 644:32–39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, J.R., Nordberg, A. Genetic and environmental aspects of the role of nicotinic receptors in neurodegenerative disorders: Emphasis on Alzheimer's disease and Parkinson's disease. Behav Genet 25, 149–159 (1995). https://doi.org/10.1007/BF02196924

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02196924

Key Words

Navigation