Skip to main content
Log in

A standard dose of linezolid puts patients with hepatic impairment at risk of overexposure

  • Research
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this retrospective observational study conducted in patients with hepatic impairment was to assess the variability of linezolid trough concentrations, to determine the risk factors for linezolid overexposure, and to investigate the effect of linezolid overexposure on linezolid-induced thrombocytopenia.

Methods

All enrolled patients received a standard dose (600 mg every 12 h) of linezolid and underwent therapeutic drug monitoring. The Child–Pugh-Turcotte score was used to divide patients into three groups: mild, moderate, and severe hepatic impairment. The risk factors for linezolid overexposure (Cmin > 8 mg/L) and linezolid-induced thrombocytopenia were examined using logistic regression. And the Kaplan–Meier curve was used to describe the association between linezolid overexposure and linezolid-induced thrombocytopenia.

Results

Seventy-seven patients were included, 37 (48.1%) of whom experienced linezolid overexposure. Patients with severe hepatic impairment had a substantially higher median Cmin of linezolid than those with mild (20.7 mg/L vs 5.51 mg/L, P < 0.001) or moderate (20.7 mg/L vs 6.70 mg/L, P = 0.001) hepatic impairment. Severe hepatic impairment was significantly associated with linezolid overexposure (OR 7.037, 95%CI 1.426–34.727, P = 0.017). After linezolid treatment, linezolid-induced thrombocytopenia occurred in 32 (41.6%) patients, and Cmin > 8 mg/L was a significant predictor of linezolid-induced thrombocytopenia (OR 3.024, 95%CI 1.083–8.541, P = 0.035).

Conclusion

Patients with hepatic impairment who received standard doses of linezolid are at greater risk of linezolid overexposure, which may lead to a higher incidence of linezolid-induced thrombocytopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Corti G, Cinelli R, Paradisi F (2000) Clinical and microbiologic efficacy and safety profile of linezolid, a new oxazolidinone antibiotic. Int J Antimicrob Agents 16(4):527–530. https://doi.org/10.1016/s0924-8579(00)00290-9

    Article  CAS  Google Scholar 

  2. Zahedi Bialvaei A, Rahbar M, Yousefi M, Asgharzadeh M, Samadi Kafil H (2017) Linezolid: a promising option in the treatment of Gram-positives. J Antimicrob Chemother 72(2):354–364. https://doi.org/10.1093/jac/dkw450

    Article  CAS  Google Scholar 

  3. Swaney SM, Aoki H, Ganoza MC, Shinabarger DL (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42(12):3251–3255. https://doi.org/10.1128/aac.42.12.3251

    Article  CAS  Google Scholar 

  4. Arenz S, Wilson DN (2016) Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb Perspect Med 6(9):a025361. https://doi.org/10.1101/cshperspect.a025361

  5. Livermore DM (2003) Linezolid in vitro: mechanism and antibacterial spectrum. J Antimicrob Chemother 51 Suppl 2:ii9–ii16. https://doi.org/10.1093/jac/dkg249

  6. Dehghanyar P, Bürger C, Zeitlinger M, Islinger F, Kovar F, Müller M, Kloft C, Joukhadar C (2005) Penetration of linezolid into soft tissues of healthy volunteers after single and multiple doses. Antimicrob Agents Chemother 49(6):2367–2371. https://doi.org/10.1128/aac.49.6.2367-2371.2005

    Article  CAS  Google Scholar 

  7. MacGowan AP (2003) Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. J Antimicrob Chemother 51 Suppl 2:ii17–ii25. https://doi.org/10.1093/jac/dkg248

  8. Fang J, Chen C, Wu Y, Zhang M, Zhang Y, Shi G, Yao Y, Chen H, Bian X (2020) Does the conventional dosage of linezolid necessitate therapeutic drug monitoring?-Experience from a prospective observational study. Ann Transl Med 8(7):493. https://doi.org/10.21037/atm.2020.03.207

    Article  CAS  Google Scholar 

  9. Galar A, Valerio M, Muñoz P, Alcalá L, García-González X, Burillo A, Sanjurjo M, Grau S, Bouza E (2017) Systematic therapeutic drug monitoring for linezolid: variability and clinical impact. Antimicrob Agents Chemother 61(10):e00687-17. https://doi.org/10.1128/aac.00687-17

  10. Töpper C, Steinbach CL, Dorn C, Kratzer A, Wicha SG, Schleibinger M, Liebchen U, Kees F, Salzberger B, Kees MG (2016) Variable linezolid exposure in intensive care unit patients-possible role of drug-drug interactions. Ther Drug Monit 38(5):573–578. https://doi.org/10.1097/ftd.0000000000000324

    Article  Google Scholar 

  11. Dong H, Wang X, Dong Y, Lei J, Li H, You H, Wang M, Xing J, Sun J, Zhu H (2011) Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 38(4):296–300. https://doi.org/10.1016/j.ijantimicag.2011.05.007

    Article  CAS  Google Scholar 

  12. Dong HY, Xie J, Chen LH, Wang TT, Zhao YR, Dong YL (2014) Therapeutic drug monitoring and receiver operating characteristic curve prediction may reduce the development of linezolid-associated thrombocytopenia in critically ill patients. Eur J Clin Microbiol Infect Dis 33(6):1029–1035. https://doi.org/10.1007/s10096-013-2041-3

    Article  CAS  Google Scholar 

  13. Luque S, Hope W, Sorli L, Munoz-Bermudez R, Campillo N, Barcelo-Vidal J, Alvarez-Lerma F, Horcajada JP, Masclans-Enviz JR, Neely M, Grau S (2021) Dosage individualization of linezolid: precision dosing of linezolid to optimize efficacy and minimize toxicity. Antimicrob Agents Chemother 65(6):e02490-20. https://doi.org/10.1128/AAC.02490-20

    Article  CAS  Google Scholar 

  14. Cheng CN, Wu CC, Kuo CH, Wang CC, Wang JT, Lin YT, Jhang RS, Lin SW (2021) Impact of high plasma concentrations of linezolid in Taiwanese adult patients- therapeutic drug monitoring in improving adverse drug reactions. J Formos Med Assoc 120(1 Pt 2):466–475. https://doi.org/10.1016/j.jfma.2020.06.011

    Article  CAS  Google Scholar 

  15. Nukui Y, Hatakeyama S, Okamoto K, Yamamoto T, Hisaka A, Suzuki H, Yata N, Yotsuyanagi H, Moriya K (2013) High plasma linezolid concentration and impaired renal function affect development of linezolid-induced thrombocytopenia. J Antimicrob Chemother 68(9):2128–2133. https://doi.org/10.1093/jac/dkt133

    Article  CAS  Google Scholar 

  16. Cattaneo D, Fusi M, Cozzi V, Baldelli S, Bonini I, Gervasoni C, Clementi E (2021) Supra-therapeutic linezolid trough concentrations in elderly patients: a call for action? Clin Pharmacokinet 60(5):603–609. https://doi.org/10.1007/s40262-020-00964-1

    Article  CAS  Google Scholar 

  17. Luque S, Muñoz-Bermudez R, Echeverría-Esnal D, Sorli L, Campillo N, Martínez-Casanova J, González-Colominas E, Álvarez-Lerma F, Horcajada JP, Grau S, Roberts JA (2019) Linezolid dosing in patients with liver cirrhosis: standard dosing risk toxicity. Ther Drug Monit 41(6):732–739. https://doi.org/10.1097/ftd.0000000000000665

    Article  CAS  Google Scholar 

  18. Matsumoto K, Takeshita A, Ikawa K, Shigemi A, Yaji K, Shimodozono Y, Morikawa N, Takeda Y, Yamada K (2010) Higher linezolid exposure and higher frequency of thrombocytopenia in patients with renal dysfunction. Int J Antimicrob Agents 36(2):179–181. https://doi.org/10.1016/j.ijantimicag.2010.02.019

    Article  CAS  Google Scholar 

  19. Sasaki T, Takane H, Ogawa K, Isagawa S, Hirota T, Higuchi S, Horii T, Otsubo K, Ieiri I (2011) Population pharmacokinetic and pharmacodynamic analysis of linezolid and a hematologic side effect, thrombocytopenia. Japanese patients Antimicrob Agents Chemother 55(5):1867–1873. https://doi.org/10.1128/AAC.01185-10

    Article  CAS  Google Scholar 

  20. Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, Fucile S, Gulisano C, Rizzardini G, Clementi E (2013) Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents 41(6):586–589. https://doi.org/10.1016/j.ijantimicag.2013.02.020

    Article  CAS  Google Scholar 

  21. Cojutti PG, Merelli M, Bassetti M, Pea F (2019) Proactive therapeutic drug monitoring (TDM) may be helpful in managing long-term treatment with linezolid safely: findings from a monocentric, prospective, open-label, interventional study. J Antimicrob Chemother 74(12):3588–3595. https://doi.org/10.1093/jac/dkz374

    Article  CAS  Google Scholar 

  22. Komatsu T, Nakamura M, Uchiyama K, Inoue G, Sakanoue K, Kawamura A, Hiratsuka K, Takayama Y, Takaso M, Atsuda K (2022) Initial trough concentration may be beneficial in preventing linezolid-induced thrombocytopenia. J Chemother 34(6):375–380. https://doi.org/10.1080/1120009X.2022.2043538

    Article  CAS  Google Scholar 

  23. Pea F, Cojutti PG, Baraldo M (2017) A 10-year experience of therapeutic drug monitoring (TDM) of linezolid in a hospital-wide population of patients receiving conventional dosing: is there enough evidence for suggesting TDM in the majority of patients? Basic Clin Pharmacol Toxicol 121(4):303–308. https://doi.org/10.1111/bcpt.12797

    Article  CAS  Google Scholar 

  24. Kok B, Abraldes JG (2019) Child-Pugh classification: time to abandon? Semin Liver Dis 39(1):96–103. https://doi.org/10.1055/s-0038-1676805

    Article  Google Scholar 

  25. Food and Drug Administration (2003) Guidance for industry pharmacokinetics in patients with impaired hepatic function: study design, data analysis, and impact on dosing and labeling. Pharmacokinetics in Patients with Impaired Hepatic Function: Study Design, Data Analysis, and Impact on Dosing and Labeling | FDA. Accessed 30 May 2003

  26. Abdullah A (2019) Determining therapeutic trough ranges for linezolid. Saudi Pharm J 27(8):1061–1063. https://doi.org/10.1016/j.jsps.2019.09.002

    Article  CAS  Google Scholar 

  27. Matsumoto K, Shigemi A, Takeshita A, Watanabe E, Yokoyama Y, Ikawa K, Morikawa N, Takeda Y (2014) Analysis of thrombocytopenic effects and population pharmacokinetics of linezolid: a dosage strategy according to the trough concentration target and renal function in adult patients. Int J Antimicrob Agents 44(3):242–247. https://doi.org/10.1016/j.ijantimicag.2014.05.010

    Article  CAS  Google Scholar 

  28. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41. https://doi.org/10.1159/000180580

    Article  CAS  Google Scholar 

  29. Wynalda MA, Hauer MJ, Wienkers LC (2000) Oxidation of the novel oxazolidinone antibiotic linezolid in human liver microsomes. Drug Metab Dispos 28(9):1014–1017

    CAS  Google Scholar 

  30. Stalker DJ, Jungbluth GL, Hopkins NK, Batts DH (2003) Pharmacokinetics and tolerance of single- and multiple-dose oral or intravenous linezolid, an oxazolidinone antibiotic, in healthy volunteers. J Antimicrob Chemother 51(5):1239–1246. https://doi.org/10.1093/jac/dkg180

    Article  CAS  Google Scholar 

  31. Fung HB, Kirschenbaum HL, Ojofeitimi BO (2001) Linezolid: an oxazolidinone antimicrobial agent. Clin Ther 23(3):356–391. https://doi.org/10.1016/s0149-2918(01)80043-6

    Article  CAS  Google Scholar 

  32. Obach RS (2022) Linezolid metabolism is catalyzed by cytochrome P450 2J2, 4F2, and 1B1. Drug Metab Dispos 50(4):413–421. https://doi.org/10.1124/dmd.121.000776

    Article  CAS  Google Scholar 

  33. Morata L, De la Calle C, Gomez-Cerquera JM, Manzanedo L, Casals G, Brunet M, Cobos-Trigueros N, Martinez JA, Mensa J, Soriano A (2016) Risk factors associated with high linezolid trough plasma concentrations. Expert Opin Pharmacother 17(9):1183–1187. https://doi.org/10.1080/14656566.2016.1182154

    Article  CAS  Google Scholar 

  34. Pea F, Furlanut M, Cojutti P, Cristini F, Zamparini E, Franceschi L, Viale P (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605–4610. https://doi.org/10.1128/AAC.00177-10

    Article  CAS  Google Scholar 

  35. Zhang Y-M, Yu W, Zhou N, Li J-Z, Xu L-C, Xie Z-Y, Lu Y-F, Li L-J (2015) High frequency of thrombocytopenia in patients with acute-on-chronic liver failure treated with linezolid. Hepatobiliary Pancreat Dis Int 14(3):287–292. https://doi.org/10.1016/s1499-3872(15)60379-4

    Article  Google Scholar 

  36. Ikuta S, Tanimura K, Yasui C, Aihara T, Yoshie H, Iida H, Beppu N, Kurimoto A, Yanagi H, Mitsunobu M, Yamanaka N (2011) Chronic liver disease increases the risk of linezolid-related thrombocytopenia in methicillin-resistant Staphylococcus aureus-infected patients after digestive surgery. J Infect Chemother 17(3):388–391. https://doi.org/10.1007/s10156-010-0188-8

    Article  CAS  Google Scholar 

  37. Zhang SH, Zhu ZY, Chen Z, Li Y, Zou Y, Yan M, Xu Y, Wang F, Liu MZ, Zhang M, Zhang BK (2020) Population pharmacokinetics and dosage optimization of linezolid in patients with liver dysfunction. Antimicrob Agents Chemother 64(6):e00133-20. https://doi.org/10.1128/AAC.00133-20

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the authors and all the participants for their time and effort.

Funding

This work was supported by the National Natural Science Foundation of China (No. 82173898), the Programs for Xi’an Science and Technology Bureau (No. 20YXYJ0001(5)), and the Institutional foundation of First Affiliated Hospital of Xi’an Jiaotong University (No. 2019ZYTS-01).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Haiyan Dong, Yalin Dong, Ru Liao; methodology: Ru Liao, Yalin Dong, Haiyan Dong; formal analysis and investigation: Ru Liao; resources: Lihong Chen, Taotao Wang, Houli Li; writing—original draft: Ru Liao; writing—review and editing: Haiyan Dong; funding acquisition: Haiyan Dong; supervision: Yalin Dong, Haiyan Dong.

Corresponding author

Correspondence to Haiyan Dong.

Ethics declarations

Ethical approval

The study was approved by the Ethics Committee of the First Affiliated Hospital of Xi’an Jiaotong University (Xi’an, China) (XJTU1AF2019LSK-163).

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, R., Dong, Y., Chen, L. et al. A standard dose of linezolid puts patients with hepatic impairment at risk of overexposure. Eur J Clin Pharmacol 79, 149–157 (2023). https://doi.org/10.1007/s00228-022-03427-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-022-03427-7

Keywords

Navigation