Skip to main content
Log in

Therapeutic drug monitoring and receiver operating characteristic curve prediction may reduce the development of linezolid-associated thrombocytopenia in critically ill patients

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

To investigate the risk factors associated with the development of thrombocytopenia, and define the thresholds of efficacy and safety in critically ill patients who received linezolid therapy. A retrospective study was performed in critically ill patients treated with linezolid. Risk factors associated with thrombocytopenia were identified via medical records and trough levels (Cmin) measured during linezolid treatment. By establishing a logistic model, the risks were predicted by the receiver operating characteristic (ROC) curve and the thresholds of efficacy and safety were identified in the patients. Logistic analysis showed that, weight (OR = 0.906; 95 % CI, 0.839–0.978; P = 0.011), baseline platelet count (OR = 0.989; 95 % CI, 0.977–1.000; P = 0.049), Cmin (OR = 1.545; 95 % CI, 1.203–1.983; P = 0.001), and APACHE II score (OR = 1.130; 95 % CI, 1.003–1.273; P = 0.044) were significant factors for linezolid-associated thrombocytopenia. The area under the ROC curve of the combined predictor was larger based on the above factors. When the Youden index was the maximum, the best optimal cut-off point was 205.6 on the ROC curve; when Cmin ≥ 2 mg/L, the probability of bacterial eradication was more than 80 %; when Cmin ≥ 6.3 mg/L, the probability of thrombocytopenia was more than 50 %. In clinical practice, when the calculating results of the combined predictor ≤205.6, the risk of the development of thrombocytopenia may be higher. Furthermore, maintenance of Cmin between 2 and 6.3 mg/L over time may be helpful in retaining appropriate efficacy and reducing the associated thrombocytopenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ament PW, Jamshed N, Horne JP (2002) Linezolid: its role in the treatment of gram-positive, drug-resistant bacterial infections. Am Fam Physician 65(4):663–670

    PubMed  Google Scholar 

  2. Attassi K, Hershberger E, Alam R, Zervos MJ (2002) Thrombocytopenia associated with linezolid therapy. Clin Infect Dis 34(5):695–698. doi:10.1086/338403

    Article  PubMed  Google Scholar 

  3. Matsumoto K, Takeda Y, Takeshita A, Fukunaga N, Shigemi A, Yaji K, Shimodozono Y, Yamada K, Ikawa K, Morikawa N (2009) Renal function as a predictor of linezolid-induced thrombocytopenia. Int J Antimicrob Agents 33(1):98–99. doi:10.1016/j.ijantimicag.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Gerson SL, Kaplan SL, Bruss JB, Le V, Arellano FM, Hafkin B, Kuter DJ (2002) Hematologic effects of linezolid: summary of clinical experience. Antimicrob Agents Chemother 46(8):2723–2726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Antal EJ, Hendershot PE, Batts DH, Sheu WP, Hopkins NK, Donaldson KM (2001) Linezolid, a novel oxazolidinone antibiotic: assessment of monoamine oxidase inhibition using pressor response to oral tyramine. J Clin Pharmacol 41(5):552–562

    Article  CAS  PubMed  Google Scholar 

  6. Renslo AR (2010) Antibacterial oxazolidinones: emerging structure-toxicity relationships. Expert Rev Anti Infect Ther 8(5):565–574. doi:10.1586/eri.10.26

    Article  CAS  PubMed  Google Scholar 

  7. McKee EE, Ferguson M, Bentley AT, Marks TA (2006) Inhibition of mammalian mitochondrial protein synthesis by oxazolidinones. Antimicrob Agents Chemother 50(6):2042–2049. doi:10.1128/AAC.01411-05

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Thallinger C, Buerger C, Plock N, Kljucar S, Wuenscher S, Sauermann R, Kloft C, Joukhadar C (2008) Effect of severity of sepsis on tissue concentrations of linezolid. J Antimicrob Chemother 61(1):173–176. doi:10.1093/jac/dkm431

    Article  CAS  PubMed  Google Scholar 

  9. Dong H, Wang X, Dong Y, Lei J, Li H, You H, Wang M, Xing J, Sun J, Zhu H (2011) Clinical pharmacokinetic/pharmacodynamic profile of linezolid in severely ill intensive care unit patients. Int J Antimicrob Agents 38(4):296–300. doi:10.1016/j.ijantimicag.2011.05.007

    Article  CAS  PubMed  Google Scholar 

  10. Pea F, Furlanut M, Cojutti P, Cristini F, Zamparini E, Franceschi L, Viale P (2010) Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother 54(11):4605–4610. doi:10.1128/AAC.00177-10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tsuji Y, Hiraki Y, Matsumoto K, Mizoguchi A, Kobayashi T, Sadoh S, Morita K, Kamimura H, Karube Y (2011) Thrombocytopenia and anemia caused by a persistent high linezolid concentration in patients with renal dysfunction. J Infect Chemother 17(1):70–75. doi:10.1007/s10156-010-0080-6

    CAS  PubMed  Google Scholar 

  12. Matsumoto K, Takeshita A, Ikawa K, Shigemi A, Yaji K, Shimodozono Y, Morikawa N, Takeda Y, Yamada K (2010) Higher linezolid exposure and higher frequency of thrombocytopenia in patients with renal dysfunction. Int J Antimicrob Agents 36(2):179–181. doi:10.1016/j.ijantimicag.2010.02.019

    Article  CAS  PubMed  Google Scholar 

  13. Hiraki Y, Tsuji Y, Hiraike M, Misumi N, Matsumoto K, Morita K, Kamimura H, Karube Y (2012) Correlation between serum linezolid concentration and the development of thrombocytopenia. Scand J Infect Dis 44(1):60–64. doi:10.3109/00365548.2011.608712

    CAS  PubMed  Google Scholar 

  14. Lin YH, Wu VC, Tsai IJ, Ho YL, Hwang JJ, Tsau YK, Wu CY, Wu KD, Hsueh PR (2006) High frequency of linezolid-associated thrombocytopenia among patients with renal insufficiency. Int J Antimicrob Agents 28(4):345–351. doi:10.1016/j.ijantimicag.2006.04.017

    Article  CAS  PubMed  Google Scholar 

  15. Soriano A, Ortega M, Garcia S, Penarroja G, Bove A, Marcos M, Martinez JC, Martinez JA, Mensa J (2007) Comparative study of the effects of pyridoxine, rifampin, and renal function on hematological adverse events induced by linezolid. Antimicrob Agents Chemother 51(7):2559–2563. doi:10.1128/AAC.00247-07

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grau S, Morales-Molina JA, Mateu-de Antonio J, Marin-Casino M, Alvarez-Lerma F (2005) Linezolid: low pre-treatment platelet values could increase the risk of thrombocytopenia. J Antimicrob Chemother 56(2):440–441. doi:10.1093/jac/dki202

    Article  CAS  PubMed  Google Scholar 

  17. Hiraki Y, Tsuji Y, Matsumoto K, Morita K, Kamimura H, Karube Y (2011) Influence of linezolid clearance on the induction of thrombocytopenia and reduction of hemoglobin. Am J Med Sci 342(6):456–460. doi:10.1097/MAJ.0b013e318218cf18

    Article  PubMed  Google Scholar 

  18. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41

    CAS  PubMed  Google Scholar 

  19. Niwa T, Suzuki A, Sakakibara S, Kasahara S, Yasuda M, Fukao A, Matsuura K, Goto C, Murakami N, Itoh Y (2009) Retrospective cohort chart review study of factors associated with the development of thrombocytopenia in adult Japanese patients who received intravenous linezolid therapy. Clin Ther 31(10):2126–2133. doi:10.1016/j.clinthera.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  20. Wu VC, Wang YT, Wang CY, Tsai IJ, Wu KD, Hwang JJ, Hsueh PR (2006) High frequency of linezolid-associated thrombocytopenia and anemia among patients with end-stage renal disease. Clin Infect Dis 42(1):66–72. doi:10.1086/498509

    Article  PubMed  Google Scholar 

  21. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ (2003) Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet 42(15):1411–1423

    Article  CAS  PubMed  Google Scholar 

  22. Jones RN, Fritsche TR, Sader HS, Ross JE (2007) Zyvox annual appraisal of potency and spectrum program results for 2006: an activity and spectrum analysis of linezolid using clinical isolates from 16 countries. Diagn Microbiol Infect Dis 59(2):199–209. doi:10.1016/j.diagmicrobio.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  23. Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M (2012) Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother 67(8):2034–2042. doi:10.1093/jac/dks153

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of the National Natural Science Foundation of China (No. 81201490 and 30973673) to this work.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y.-L. Dong.

Additional information

Y.-R. Zhao and Y.-L. Dong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, HY., Xie, J., Chen, LH. et al. Therapeutic drug monitoring and receiver operating characteristic curve prediction may reduce the development of linezolid-associated thrombocytopenia in critically ill patients. Eur J Clin Microbiol Infect Dis 33, 1029–1035 (2014). https://doi.org/10.1007/s10096-013-2041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-2041-3

Keywords

Navigation