Skip to main content
Log in

Repaglinide-irbesartan drug interaction: effects of SLCO1B1 polymorphism on repaglinide pharmacokinetics and pharmacodynamics in Chinese population

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

On account of the potential inhibition of OATP1B1 (organic anion transporting polypeptide) by angiotensin II receptor blockers (ARBs) and the effects of SLCO1B1 (solute carrier organic anion transporter family member) polymorphism, the aim of current study is to assess the impact of ARBs on the pharmacokinetics (PK) and pharmacodynamics (PD) of repaglinide in Chinese healthy volunteers with different SLCO1B1 genotypes.

Methods

The in vitro study was conducted on irbesartan, valsartan, olmesartan, and losartan by using HEK293 cells transfected with OATP1B1. Data on drug interactions between repaglinide and irbesartan from 21 healthy Chinese-Han male volunteers were collected and analyzed.

Results

IC50 from in vitro study suggested irbesartan was the most potent inhibitor of OATP1B1 transporter. Clinical data from single dose of repaglinide indicated SLCO1B1 c.521 T>C polymorphism influenced the PK and PD of repaglinide in healthy Chinese-Han male volunteers. In subjects with SLCO1B1 c.521 TT genotype, irbesartan comedication increased the exposure of repaglinide. In details, the peak plasma concentration [Cmax] increased 84% (P = 0.003) and the area under the curve of plasma concentration 0–8 h [AUC0–8] increased 34% (P = 0.004), while the minimum blood glucose concentration [Cmin] decreased 33.8% (P = 0.005). No significant change was observed in repaglinide exposure in subjects with SLCO1B1 c.521 TC genotype in presence or absence of irbesartan.

Conclusion

SLCO1B1 c.521 T>C polymorphism affects the PK of repaglinide in Chinese population. Irbesartan increased repaglinide exposure in subjects with SLCO1B1 c.521 TT genotype, but not SLCO1B1 c.521 TC genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hatorp V (2002) Clinical pharmacokinetics and pharmacodynamics of repaglinide. Clin Pharmacokinet 41(7):471–483

    Article  PubMed  CAS  Google Scholar 

  2. Kirchheiner J, Roots I, Goldammer M, Rosenkranz B, Brockmoller J (2005) Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin Pharmacokinet 44(12):1209–1225 eng

    Article  PubMed  CAS  Google Scholar 

  3. Bidstrup TB, Bjornsdottir I, Sidelmann UG, Thomsen MS, Hansen KT (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56(3):305–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Niemi M, Backman JT, Kajosaari LI, Leathart JB, Neuvonen M, Daly AK et al (2005) Polymorphic organic anion transporting polypeptide 1B1 is a major determinant of repaglinide pharmacokinetics. Clin Pharmacol Ther 77(6):468–478 eng

    Article  PubMed  CAS  Google Scholar 

  5. Kajosaari LI, Laitila J, Neuvonen PJ, Backman JT (2005) Metabolism of repaglinide by CYP2C8 and CYP3A4 in vitro: effect of fibrates and rifampicin. Basic Clin Pharmacol Toxicol 97(4):249–256

    Article  PubMed  CAS  Google Scholar 

  6. Gan J, Chen W, Shen H, Gao L, Hong Y, Tian Y et al (2010) Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism. Br J Clin Pharmacol 70(6):870–880 eng

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zhu J, Song M, Tan HY, Huang LH, Huang ZJ, Liu C, Fu ZM, Huang YY, Tan ZR, Chen XP, Yuan H, Yang GP (2013) Effect of pitavastatin in different SLCO1B1 backgrounds on repaglinide pharmacokinetics and pharmacodynamics in healthy Chinese males. Pak J Pharm Sci 26(3):577–584

    PubMed  CAS  Google Scholar 

  8. Kalliokoski A, Backman JT, Kurkinen KJ, Neuvonen PJ, Niemi M (2008) Effects of gemfibrozil and atorvastatin on the pharmacokinetics of repaglinide in relation to SLCO1B1 polymorphism. Clin Pharmacol Ther 84(4):488–496

    Article  PubMed  CAS  Google Scholar 

  9. Niemi M, Schaeffeler E, Lang T, Fromm MF, Neuvonen M, Kyrklund C, Backman JT, Kerb R, Schwab M, Neuvonen PJ, Eichelbaum M, Kivistö KT (2004) High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATP-C, SLCO1B1). Pharmacogenetics 14(7):429–440

    Article  PubMed  CAS  Google Scholar 

  10. Kalliokoski A, Backman JT, Neuvonen PJ, Niemi M (2008) Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide. Pharmacogenet Genomics 18(11):937–942 eng

    Article  PubMed  CAS  Google Scholar 

  11. He J, Qiu Z, Li N, Yu Y, Lu Y, Han D, Li T, Zhao D, Sun W, Fang F, Zheng J, Fan H, Chen X (2011) Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur J Clin Pharmacol 67(7):701–707

    Article  PubMed  CAS  Google Scholar 

  12. Xiang Q, Cui YM, Zhao X, Yan L, Zhou Y (2012) The influence of MDR1 G2677T/a genetic polymorphisms on the pharmacokinetics of repaglinide in healthy Chinese volunteers. Pharmacology 89(1–2):105–110

    Article  PubMed  CAS  Google Scholar 

  13. Taylor J (2013) 2013 ESH/ESC guidelines for the management of arterial hypertension. Eur Heart J 34(28):2108–2109

    PubMed  Google Scholar 

  14. Karlgren M, Ahlin G, Bergstrom CA, Svensson R, Palm J, Artursson P (2012) In vitro and in silico strategies to identify OATP1B1 inhibitors and predict clinical drug-drug interactions. Pharm Res 29(2):411–426

    Article  PubMed  CAS  Google Scholar 

  15. Wang X, Wolkoff AW, Morris ME (2005) Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab Dispos 33(11):1666–1672 eng

    Article  PubMed  CAS  Google Scholar 

  16. Wu LX, Guo CX, Chen WQ, Yu J, Qu Q, Chen Y, Tan ZR, Wang G, Fan L, Li Q, Zhang W, Zhou HH (2012) Inhibition of the organic anion-transporting polypeptide 1B1 by quercetin: an in vitro and in vivo assessment. Br J Clin Pharmacol 73(5):750–757

    Article  PubMed  CAS  Google Scholar 

  17. Wu LX, Guo CX, Qu Q, Yu J, Chen WQ, Wang G, Fan L, Li Q, Zhang W, Zhou HH (2012) Effects of natural products on the function of human organic anion transporting polypeptide 1B1. Xenobiotica 42(4):339–348

    Article  PubMed  CAS  Google Scholar 

  18. Hirano M, Maeda K, Shitara Y, Sugiyama Y (2006) Drug-drug interaction between pitavastatin and various drugs via OATP1B1. Drug Metab Dispos 34(7):1229–1236 eng

    Article  PubMed  CAS  Google Scholar 

  19. Ito K, Iwatsubo T, Kanamitsu S, Ueda K, Suzuki H, Sugiyama Y (1998) Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver. Pharmacol Rev 50(3):387–412

    PubMed  CAS  Google Scholar 

  20. Zhang W, He YJ, Han CT, Liu ZQ, Li Q, Fan L, Tan ZR, Zhang WX, Yu BN, Wang D, Hu DL, Zhou HH (2006) Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br J Clin Pharmacol 62(5):567–572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Qiu X, Wang Z, Wang B, Zhan H, Pan X, Xu RA (2014) Simultaneous determination of irbesartan and hydrochlorothiazide in human plasma by ultra high performance liquid chromatography tandem mass spectrometry and its application to a bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci 957:110–115

    Article  PubMed  CAS  Google Scholar 

  22. Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, Park MS, Chung JY (2011) Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther 89(3):416–421

    Article  PubMed  CAS  Google Scholar 

  23. Oswald S, Konig J, Lutjohann D, Giessmann T, Kroemer HK, Rimmbach C et al (2008) Disposition of ezetimibe is influenced by polymorphisms of the hepatic uptake carrier OATP1B1. Pharmacogenet Genomics 18(7):559–568 eng

    Article  PubMed  CAS  Google Scholar 

  24. Tirona RG, Leake BF, Wolkoff AW, Kim RB (2003) Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther 304(1):223–228 eng

    Article  PubMed  CAS  Google Scholar 

  25. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15(7):513–522 eng

    Article  PubMed  CAS  Google Scholar 

  26. Ho RH, Tirona RG, Leake BF, Glaeser H, Lee W, Lemke CJ, Wang Y, Kim RB (2006) Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology 130(6):1793–1806

    Article  PubMed  CAS  Google Scholar 

  27. Iwai M, Suzuki H, Ieiri I, Otsubo K, Sugiyama Y (2004) Functional analysis of single nucleotide polymorphisms of hepatic organic anion transporter OATP1B1 (OATP-C). Pharmacogenetics 14(11):749–757

    Article  PubMed  CAS  Google Scholar 

  28. Katz DA, Carr R, Grimm DR, Xiong H, Holley-Shanks R, Mueller T, Leake B, Wang Q, Han L, Wang PG, Edeki T, Sahelijo L, Doan T, Allen A, Spear BB, Kim RB (2006) Organic anion transporting polypeptide 1B1 activity classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin Pharmacol Ther 79(3):186–196

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81373490, 81573463, 81573508), National Key Research and Development Programs (2016YFC1306900, 2016YFC0905002, 2016YFC1201805), The Strategy-Oriented Special Project of Central South University in China (ZLXD2017003), and Hunan Natural Science Foundation (2017JJ3464).

Author information

Authors and Affiliations

Authors

Contributions

Zhao-QianLiu, Guo-Ping Yang, and Qi Pei conceived and designed the experiments; Qi Pei, Yi Zheng, Jun-Yan Liu, and Mi Luo analyzed the plasma concentrations. Qi Pei, Cheng-Xian Guo, Jun-Yan Liu, and Ji-Ye Yin performed the in vitro research. Qi Pei and Xi Li analyzed the data. Qi Pei, Xi Li, Ji-Ye Yin, and Zhao-Qian Liu wrote the paper. Shi-Kun Liu, Pan Xie, and Hong-Hao Zhou reviewed and edited the manuscript. All authors have read and approved the manuscript.

Corresponding authors

Correspondence to Xi Li or Zhao-Qian Liu.

Ethics declarations

The study protocol was reviewed and approved by the ethics committee of the Institute of Clinical Pharmacology, Central South University (Changsha, Hunan, P. R. China).

Electronic supplementary material

ESM 1

(DOCX 646kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Q., Liu, JY., Yin, JY. et al. Repaglinide-irbesartan drug interaction: effects of SLCO1B1 polymorphism on repaglinide pharmacokinetics and pharmacodynamics in Chinese population. Eur J Clin Pharmacol 74, 1021–1028 (2018). https://doi.org/10.1007/s00228-018-2477-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-018-2477-6

Keywords

Navigation