Skip to main content
Log in

Clinical Pharmacokinetic, Pharmacodynamic, and Drug–Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The sodium-glucose co-transporter 2 (SGLT2) inhibitors represent novel therapeutic approaches in the management of type 2 diabetes mellitus; they act on kidneys to decrease the renal threshold for glucose (RTG) and increase urinary glucose excretion (UGE). Canagliflozin is an orally active, reversible, selective SGLT2 inhibitor. Orally administered canagliflozin is rapidly absorbed achieving peak plasma concentrations in 1–2 h. Dose-proportional systemic exposure to canagliflozin has been observed over a wide dose range (50–1600 mg) with an oral bioavailability of 65 %. Canagliflozin is glucuronidated into two inactive metabolites, M7 and M5 by uridine diphosphate-glucuronosyltransferase (UGT) 1A9 and UGT2B4, respectively. Canagliflozin reaches steady state in 4 days, and there is minimal accumulation observed after multiple dosing. Approximately 60 % and 33 % of the administered dose is excreted in the feces and urine, respectively. The half-life of orally administered canagliflozin 100 or 300 mg in healthy participants is 10.6 and 13.1 h, respectively. No clinically relevant differences are observed in canagliflozin exposure with respect to age, race, sex, and body weight. The pharmacokinetics of canagliflozin remains unaffected by mild or moderate hepatic impairment. Systemic exposure to canagliflozin is increased in patients with renal impairment relative to those with normal renal function; however, the efficacy is reduced in patients with renal impairment owing to the reduced filtered glucose load. Canagliflozin did not show clinically relevant drug interactions with metformin, glyburide, simvastatin, warfarin, hydrochlorothiazide, oral contraceptives, probenecid, and cyclosporine, while co-administration with rifampin modestly reduced canagliflozin plasma concentrations and thus may necessitate an appropriate monitoring of glycemic control. Canagliflozin increases UGE and suppresses RTG in a dose-dependent manner, thereby lowering the plasma glucose levels and reducing the glycosylated hemoglobin levels through an insulin-independent mechanism of action. The 300-mg dose provides near-maximal effects on RTG throughout the full 24-h dosing interval, whereas the effect of the 100-mg dose on RTG is near-maximal for approximately 12 h and is modestly attenuated during the overnight period. The observed pharmacokinetic/pharmacodynamic profile of canagliflozin in patients with type 2 diabetes mellitus supports a once-daily dosing regimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. American-Diabetes-Association. Standards of medical care in diabetes—2015. Diabetes Care. 2015; 38 Suppl 1: S11–66.

  2. Braga MF, Casanova A, Teoh H, Gerstein HC, Fitchett DH, Honos G, et al. Poor achievement of guidelines-recommended targets in type 2 diabetes: findings from a contemporary prospective cohort study. Int J Clin Pract. 2012;66(5):457–64.

    Article  CAS  PubMed  Google Scholar 

  3. Hermans MP, Brotons C, Elisaf M, Michel G, Muls E, Nobels F. Optimal type 2 diabetes mellitus management: the randomised controlled OPTIMISE benchmarking study: baseline results from six European countries. Eur J Prev Cardiol. 2013;20(6):1095–105.

    Article  PubMed  Google Scholar 

  4. Wong ND, Glovaci D, Wong K, Malik S, Franklin SS, Wygant G, et al. Global cardiovascular disease risk assessment in United States adults with diabetes. Diab Vasc Dis Res. 2012;9(2):146–52.

    Article  PubMed  Google Scholar 

  5. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91(2):733–94.

    Article  CAS  PubMed  Google Scholar 

  6. Scheen AJ. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus. Clin Pharmacokinet. 2014;53(4):295–304.

    Article  CAS  PubMed  Google Scholar 

  7. Nomura S. Renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors for new anti-diabetic agent. Curr Top Med Chem. 2010;10(4):411–8.

    Article  CAS  PubMed  Google Scholar 

  8. Liang Y, Arakawa K, Ueta K, Matsushita Y, Kuriyama C, Martin T, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS One. 2012;7(2):e30555.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Meng W, Ellsworth BA, Nirschl AA, McCann PJ, Patel M, Girotra RN, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem. 2008;51(5):1145–9.

    Article  CAS  PubMed  Google Scholar 

  10. Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90.

    Article  CAS  PubMed  Google Scholar 

  11. Devineni D, Curtin CR, Polidori D, Gutierrez MJ, Murphy J, Rusch S, et al. Pharmacokinetics and pharmacodynamics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in subjects with type 2 diabetes mellitus. J Clin Pharmacol. 2013;53(6):601–10.

    Article  CAS  PubMed  Google Scholar 

  12. Devineni D, Vaccaro N, Polidori D, Stieltjes H, Wajs E. Single- and multiple-dose pharmacokinetics and pharmacodynamics of canagliflozin, a selective inhibitor of sodium glucose co-transporter 2, in healthy participants. Int J Clin Pharmacol Ther. 2015;53(2):129–38.

    Article  CAS  PubMed  Google Scholar 

  13. Devineni D, Manitpisitkul P, Murphy J, Skee D, Wajs E, Mamidi RN, et al. Effect of canagliflozin on the pharmacokinetics of glyburide, metformin and simvastatin in healthy participants. Clin Pharm Drug Dev. 2014;. doi:10.1002/cpdd.166.

    Google Scholar 

  14. Devineni D, Manitpisitkul P, Vaccaro N, Bernard A, Skee D, MamidiRao N, et al. Effect of canagliflozin, a sodium glucose co-transporter 2 inhibitor, on the pharmacokinetics of oral contraceptives, warfarin, and digoxin in healthy participants. Int J Clin Pharmacol Ther. 2015;53(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  15. Devineni D, Vaccaro N, Murphy J, Curtin C, MamidiRao N, Weiner S, et al. Effects of rifampin, cyclosporine A, or probenecid on the pharmacokinetic profile of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Int J Clin Pharmacol Ther. 2015;53(2):115–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Devineni D, Vaccaro N, Polidori D, Rusch S, Wajs E. Effects of hydrochlorothiazide on the pharmacokinetics, pharmacodynamics, and tolerability of canagliflozin, a sodium glucose co-transporter 2 inhibitor, in healthy participants. Clin Ther. 2014;36(5):698–710.

    Article  CAS  PubMed  Google Scholar 

  17. Wexler D, Vandebosch A, Usiskin K, Allison M, Devineni D. Study of electrocardiogram intervals in healthy adults receiving single oral doses of canagliflozin. Diabetes. 2010;59(1).

  18. Devineni D, Curtin CR, Marbury TC, Smith W, Vaccaro N, Wexler D, et al. Effect of hepatic or renal impairment on the pharmacokinetics of Canagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Ther. 2015;37(3):610–628.e4. doi:10.1016/j.clinthera.2014.12.013.

  19. Devineni D, Polidori, D, Curtin, CR, Murphy, J, Wang, SS, Stieltjes, H. Pharmacokinetics and pharmacodynamics of once- and twice-daily multiple-doses of canagliflozin, a selective inhibitor of sodium glucose co-transporter 2, in healthy participants. Int J Clin Pharmacol Ther. 2015. doi:10.5414/CP202324.

  20. Devineni D, Murphy J, Wang S-S, Stieltjes H, Rothenberg P, Scheers E, et al. Absolute oral bioavailability and pharmacokinetics of canagliflozin: a microdose study in healthy participants. Clin Pharm Drug Dev. 2014;. doi:10.1002/cpdd.162.

    Google Scholar 

  21. Devineni D, Manitpisitkul P, Murphy J, Stieltjes H, Ariyawansa J, Di Prospero N, et al. Effect of food on the pharmacokinetics of canagliflozin, a sodium glucose co-transporter 2 inhibitor, and assessment of dose proportionality in healthy participants. Clin Pharm Drug Dev. 2014;. doi:10.1002/cpdd.151.

    Google Scholar 

  22. Murphy J, Wang SS, Stieltjes H, Wajs E, Devineni D. Effect of food on the pharmacokinetics of canagliflozin/metformin (150/1,000 mg) immediate-release fixed-dose combination tablet in healthy participants. Int J Clin Pharmacol Ther. 2015;53(3):256–64.

    Article  CAS  PubMed  Google Scholar 

  23. Mamidi RN, Cuyckens F, Chen J, Scheers E, Kalamaridis D, Lin R, et al. Metabolism and excretion of canagliflozin in mice, rats, dogs, and humans. Drug Metab Dispos. 2014;42(5):903–16.

    Article  PubMed  Google Scholar 

  24. Davies B, Morris T. Physiological parameters in laboratory animals and humans. Pharm Res. 1993;10(7):1093–5.

    Article  CAS  PubMed  Google Scholar 

  25. Kinoshita S, Kondo K. Evaluation of pharmacokinetic and pharmacodynamic interactions of canagliflozin and teneligliptin in Japanese healthy male volunteers. Expert Opin Drug Metab Toxicol. 2015;11(1):7–14.

    CAS  PubMed  Google Scholar 

  26. Olsen KM, Kearns GL, Kemp SF. Glyburide protein binding and the effect of albumin glycation in children, young adults, and older adults with diabetes. J Clin Pharmacol. 1995;35(7):739–45.

    Article  CAS  PubMed  Google Scholar 

  27. Mungall D, Wong YY, Talbert RL, Crawford MH, Marshall J, Hawkins DW, et al. Plasma protein binding of warfarin: methodological considerations. J Pharm Sci. 1984;73(7):1000–1.

    Article  CAS  PubMed  Google Scholar 

  28. Reinoso RF. Sanchez Navarro A, Garcia MJ, and Prous JR, Preclinical pharmacokinetics of statins. Methods Find Exp Clin Pharmacol. 2002;24(9):593–613.

    CAS  PubMed  Google Scholar 

  29. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201–8.

    Article  CAS  PubMed  Google Scholar 

  30. Hoeben E, Vermeulen A, Winter WD, Neyens M, Devineni D, Dunne A. Population pharmacokinetic analysis of canagliflozin, an orally active inhibitor of sodium-glucose co-transporter 2 for the treatment of patients with type 2 diabetes mellitus. Clin Pharmacokinet. 2015 (accepted for publications).

  31. Inagaki N, Kondo K, Yoshinari T, Ishii M, Sakai M, Kuki H, et al. Pharmacokinetic and pharmacodynamic profiles of canagliflozin in Japanese patients with type 2 diabetes mellitus and moderate renal impairment. Clin Drug Investig. 2014;34(10):731–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Devineni D, Vaccaro N, Polidori D, Curtin CR, Stiltjes H, Hu P, et al. Pharmacokinetics, pharmacodynamics and safety of single-dose canagliflozin in healthy Chinese participants. Clin Ther. 2015 (accepted).

  33. Polidori D, Sha S, Ghosh A, Plum-Morschel L, Heise T, Rothenberg P. Validation of a novel method for determining the renal threshold for glucose excretion in untreated and canagliflozin-treated subjects with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2013;98(5):E867–71.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Sha S, Devineni D, Ghosh A, Polidori D, Chien S, Wexler D, et al. Canagliflozin, a novel inhibitor of sodium glucose co-transporter 2, dose dependently reduces calculated renal threshold for glucose excretion and increases urinary glucose excretion in healthy subjects. Diabetes Obes Metab. 2011;13(7):669–72.

    Article  CAS  PubMed  Google Scholar 

  35. Devineni D, Morrow L, Hompesch M, Skee D, Vandebosch A, Murphy J, et al. Canagliflozin improves glycaemic control over 28 days in subjects with type 2 diabetes not optimally controlled on insulin. Diabetes Obes Metab. 2012;14(6):539–45.

    Article  CAS  PubMed  Google Scholar 

  36. Sha S, Devineni D, Ghosh A, Polidori D, Hompesch M, Arnolds S, et al. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS One. 2014;9(8):e105638.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Sha S, Polidori D, Heise T, Natarajan J, Farrell K, Wang SS, et al. Effect of the sodium glucose co-transporter 2 inhibitor canagliflozin on plasma volume in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2014;16(11):1087–95. doi:10.1111/dom.12322.

  38. Polidori D, Sha S, Mudaliar S, Ciaraldi TP, Ghosh A, Vaccaro N, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diabetes Care. 2013;36(8):2154–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, et al. Dose-ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35(6):1232–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15(4):372–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Polidori D, Mari A, Ferrannini E. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, improves model-based indices of beta cell function in patients with type 2 diabetes. Diabetologia. 2014;57(5):891–901.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Stein P, Berg JK, Morrow L, Polidori D, Artis E, Rusch S, et al. Canagliflozin, a sodium glucose co-transporter 2 inhibitor, reduces post-meal glucose excursion in patients with type 2 diabetes by a non-renal mechanism: results of a randomized trial. Metabolism. 2014;63(10):1296–303. doi:10.1016/j.metabol.2014.07.003.

  43. Kahn BB, Shulman GI, DeFronzo RA, Cushman SW, Rossetti L. Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. J Clin Invest. 1991;87(2):561–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Rossetti L, Shulman GI, Zawalich W, DeFronzo RA. Effect of chronic hyperglycemia on in vivo insulin secretion in partially pancreatectomized rats. J Clin Invest. 1987;80(4):1037–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Rossetti L, Smith D, Shulman GI, Papachristou D, DeFronzo RA. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J Clin Invest. 1987;79(5):1510–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Wilding JP, Charpentier G, Hollander P, Gonzalez-Galvez G, Mathieu C, Vercruysse F, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;67(12):1267–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Cefalu WT, Leiter LA, Yoon KH, Arias P, Niskanen L, Xie J, et al. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet. 2013;382(9896):941–50.

    Article  CAS  PubMed  Google Scholar 

  48. Leiter LA, Yoon KH, Arias P, Langslet G, Xie J, Balis DA, et al. Canagliflozin provides durable glycemic improvements and body weight reduction over 104 weeks versus glimepiride in patients with type 2 diabetes on metformin: a randomized, double-blind, phase 3 study. Diabetes Care. 2015;38(3):355–64.

    Article  CAS  PubMed  Google Scholar 

  49. Pratley R, Nauck M, Bailey T, Montanya E, Cuddihy R, Filetti S, et al. One year of liraglutide treatment offers sustained and more effective glycaemic control and weight reduction compared with sitagliptin, both in combination with metformin, in patients with type 2 diabetes: a randomised, parallel-group, open-label trial. Int J Clin Pract. 2011;65(4):397–407.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Perkins BA, Cherney DZ, Partridge H, Soleymanlou N, Tschirhart H, Zinman B, et al. Sodium-glucose cotransporter 2 inhibition and glycemic control in type 1 diabetes: results of an 8-week open-label proof-of-concept trial. Diabetes Care. 2014;37(5):1480–3.

    Article  PubMed  Google Scholar 

  51. Devenny JJ, Godonis HE, Harvey SJ, Rooney S, Cullen MJ, Pelleymounter MA. Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats. Obesity (Silver Spring). 2012;20(8):1645–52.

    Article  CAS  Google Scholar 

  52. Usiskin K, Kline I, Fung A, Mayer C, Meininger G. Safety and tolerability of canagliflozin in patients with type 2 diabetes mellitus: pooled analysis of phase 3 study results. Postgrad Med. 2014;126(3):16–34.

    Article  PubMed  Google Scholar 

  53. Plosker G. Canagliflozin: a review of its use in patients with type 2 diabetes mellitus. Drugs. 2014;74(7):807–24.

    Article  CAS  PubMed  Google Scholar 

  54. Scheen AJ. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs. 2015;75(1):33–59.

    Article  PubMed  Google Scholar 

  55. Schernthaner G, Gross JL, Rosenstock J, Guarisco M, Fu M, Yee J, et al. Canagliflozin compared with sitagliptin for patients with type 2 diabetes who do not have adequate glycemic control with metformin plus sulfonylurea: a 52-week randomized trial. Diabetes Care. 2013;36(9):2508–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, et al. Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia. 2013;56(12):2582–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15(5):463–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Invokana™, Prescribing Information, 2013. Reference ID: 3285059. Drugs@FDA: FDA Approved Drug Products. Original Approval Date March 29, 2013. http://www.accessdata.fda.gov. Accessed 13 Aug 2014.

  59. Sha S, Devineni D, Ghosh A, Polidori D, Hompesch M, Arnolds S, et al. Pharmacodynamic effects of canagliflozin, a sodium glucose co-transporter 2 inhibitor, from a randomized study in patients with type 2 diabetes. PLoS One. 2014;9(8):e105638.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Shruti Shah, PhD (SIRO Clinpharm Pvt. Ltd.) for writing assistance and Bradford Challis, PhD (Janssen Research & Development, LLC) for additional editorial support for the development of this manuscript. We thank Nicole Vaccaro for helping us with statistical analyses and providing the figures for the manuscript.

Disclosures

Both authors are employees of Janssen Research & Development LLC, and own stock/stock options in the company. Both authors meet ICMJE criteria and only those who fulfilled these criteria are listed as authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damayanthi Devineni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devineni, D., Polidori, D. Clinical Pharmacokinetic, Pharmacodynamic, and Drug–Drug Interaction Profile of Canagliflozin, a Sodium-Glucose Co-transporter 2 Inhibitor. Clin Pharmacokinet 54, 1027–1041 (2015). https://doi.org/10.1007/s40262-015-0285-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0285-z

Keywords

Navigation