Skip to main content
Log in

Concentration effect relationship of CYP3A inhibition by ritonavir in humans

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the dose and concentration dependency of CYP3A inhibition by ritonavir using the established limited sampling strategy with midazolam for CYP3A activity.

Methods

An open, fixed-sequence study was carried out in 12 healthy subjects. Single ascending doses of ritonavir (0.1–300 mg) were evaluated for CYP3A inhibition in two cohorts using midazolam as a marker substance.

Results

Ritonavir administered as a single oral dose produced a dose-dependent CYP3A inhibition with an ID50 of 3.4 mg. Using the measured ritonavir concentrations an exposure–inhibition effect curve was established with an IC50 of 600 h pmol/L (AUC2–4). Over the ritonavir dose range studied non-linear exposure of ritonavir was observed.

Conclusions

Ritonavir shows a dose and concentration effect relationship of CYP3A inhibition. In addition, a proposed auto-inhibition of ritonavir metabolism resulted in a non-linear exposure of ritonavir with sub-proportional concentrations at low doses. A time-dependent CYP3A activity may result when inhibitors of CYP3A with short elimination half-lives are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21(1):70–83

    Article  PubMed  CAS  Google Scholar 

  2. Gass RJ, Gal J, Fogle PW, Detmar-Hanna D, Gerber JG (1998) Neither dapsone hydroxylation nor cortisol 6beta-hydroxylation detects the inhibition of CYP3A4 by HIV-1 protease inhibitors. Eur J Clin Pharmacol 54(9–10):741–747

    Article  PubMed  CAS  Google Scholar 

  3. Greenblatt DJ, von Moltke LL, Harmatz JS, Durol AL, Daily JP, Graf JA, Mertzanis P, Hoffman JL, Shader RI (2000) Differential impairment of triazolam and zolpidem clearance by ritonavir. J Acquir Immune Defic Syndr 24(2):129–136

    PubMed  CAS  Google Scholar 

  4. Hsu A, Granneman GR, Bertz RJ (1998) Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35(4):275–291

    Article  PubMed  CAS  Google Scholar 

  5. Ouellet D, Hsu A, Qian J, Locke CS, Eason CJ, Cavanaugh JH, Leonard JM, Granneman GR (1998) Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 46(2):111–116

    Article  PubMed  CAS  Google Scholar 

  6. Zhou SF, Xue CC, Yu XQ, Li C, Wang G (2007) Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit 29(6):687–710

    Article  PubMed  CAS  Google Scholar 

  7. Katzenmaier S, Markert C, Mikus G (2010) Proposal of a new limited sampling strategy to predict CYP3A activity using a partial AUC of midazolam. Eur J Clin Pharmacol 66(11):1137–1141

    Article  PubMed  CAS  Google Scholar 

  8. Lee JI, Chaves-Gnecco D, Amico JA, Kroboth PD, Wilson JW, Frye RF (2002) Application of semisimultaneous midazolam administration for hepatic and intestinal cytochrome P450 3A phenotyping. Clin Pharmacol Ther 72(6):718–728

    Article  PubMed  CAS  Google Scholar 

  9. Lee LS, Bertino JS Jr, Nafziger AN (2006) Limited sampling models for oral midazolam: midazolam plasma concentrations, not the ratio of 1-hydroxymidazolam to midazolam plasma concentrations, accurately predicts AUC as a biomarker of CYP3A activity. J Clin Pharmacol 46(2):229–234

    Article  PubMed  CAS  Google Scholar 

  10. Katzenmaier S, Markert C, Riedel KD, Burhenne J, Haefeli WE, Mikus G (2011) Determining the time course of CYP3A inhibition by potent reversible and irreversible CYP3A inhibitors using A limited sampling strategy. Clin Pharmacol Ther 90(5):666–673

    Article  PubMed  CAS  Google Scholar 

  11. Knox TA, Oleson L, von Moltke LL, Kaufman RC, Wanke CA, Greenblatt DJ (2008) Ritonavir greatly impairs CYP3A activity in HIV infection with chronic viral hepatitis. J Acquir Immune Defic Syndr 49(4):358–368

    Article  PubMed  CAS  Google Scholar 

  12. Greenblatt DJ, Peters DE, Oleson LE, Harmatz JS, MacNab MW, Berkowitz N, Zinny MA, Court MH (2009) Inhibition of oral midazolam clearance by boosting doses of ritonavir, and by 4,4-dimethyl-benziso-(2H)-selenazine (ALT-2074), an experimental catalytic mimic of glutathione oxidase. Br J Clin Pharmacol 68(6):920–927

    Article  PubMed  CAS  Google Scholar 

  13. Mathias AA, West S, Hui J, Kearney BP (2009) Dose–response of ritonavir on hepatic CYP3A activity and elvitegravir oral exposure. Clin Pharmacol Ther 85(1):64–70

    Article  PubMed  CAS  Google Scholar 

  14. European Medicines Agency (2012) Norvir-EMEA/H/C/000127 -II/0115

  15. Quintela O, Cruz A, Concheiro M, de Castro A, Lopez-Rivadulla M (2004) A sensitive, rapid and specific determination of midazolam in human plasma and saliva by liquid chromatography/electrospray mass spectrometry. Rapid Commun Mass Spectrom 18(24):2976–2982

    Article  PubMed  CAS  Google Scholar 

  16. Fuchs I, Hafner-Blumenstiel V, Markert C, Burhenne J, Weiss J, Haefeli WE, Mikus G (2012) Effect of the CYP3A inhibitor ketoconazole on the PXR-mediated induction of CYP3A activity. Eur J Clin Pharmacol 69(3):507–513

    Article  PubMed  Google Scholar 

  17. Hafner V, Jager M, Matthee AK, Ding R, Burhenne J, Haefeli WE, Mikus G (2010) Effect of simultaneous induction and inhibition of CYP3A by St John’s Wort and ritonavir on CYP3A activity. Clin Pharmacol Ther 87(2):191–196

    Article  PubMed  CAS  Google Scholar 

  18. Hill A, van der Lugt J, Sawyer W, Boffito M (2009) How much ritonavir is needed to boost protease inhibitors? Systematic review of 17 dose-ranging pharmacokinetic trials. AIDS 23(17):2237–2245

    Article  PubMed  CAS  Google Scholar 

  19. Kumar GN, Rodrigues AD, Buko AM, Denissen JF (1996) Cytochrome P450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 277(1):423–431

    PubMed  CAS  Google Scholar 

  20. Von Moltke LL, Durol AL, Duan SX, Greenblatt DJ (2000) Potent mechanism-based inhibition of human CYP3A in vitro by amprenavir and ritonavir: comparison with ketoconazole. Eur J Clin Pharmacol 56(3):259–261

    Article  Google Scholar 

  21. Tran TH, Von Moltke LL, Venkatakrishnan K, Granda BW, Gibbs MA, Obach RS, Harmatz JS, Greenblatt DJ (2002) Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. Drug Metab Dispos 30(12):1441–1445

    Article  PubMed  CAS  Google Scholar 

  22. Mikus G, Walter-Sack I (2013) CYP3A auto-inhibition of drug metabolism, an unrecognised mechanism of non-linearity in pharmacokinetics. Eur J Clin Pharmacol submitted

  23. Culm-Merdek KE, von Moltke LL, Gan L, Horan KA, Reynolds R, Harmatz JS, Court MH, Greenblatt DJ (2006) Effect of extended exposure to grapefruit juice on cytochrome P450 3A activity in humans: comparison with ritonavir. Clin Pharmacol Ther 79(3):243–254

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the excellent assistance of Marlies Stützle-Schnetz, RN with the study conduct, and Magdalena Longo and Monika Maurer for technical support during analytical procedures.

Competing interests

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Mikus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichbaum, C., Cortese, M., Blank, A. et al. Concentration effect relationship of CYP3A inhibition by ritonavir in humans. Eur J Clin Pharmacol 69, 1795–1800 (2013). https://doi.org/10.1007/s00228-013-1530-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-013-1530-8

Keywords

Navigation