Skip to main content

Advertisement

Log in

Population pharmacokinetics of nevirapine in combination with rifampicin-based short course chemotherapy in HIV- and tuberculosis-infected South African patients

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The aim was to develop a model to describe the population pharmacokinetics of nevirapine in South African human immunodeficiency virus (HIV)-infected patients who were taking nevirapine-based antiretroviral therapy concomitantly or in the absence of rifampicin-based tuberculosis therapy.

Methods

Patients were divided into two groups: (1) patients receiving nevirapine-containing antiretroviral regimen (200 mg twice daily) and continuation phase rifampicin-containing tuberculosis therapy (n = 27) in whom blood samples were obtained before and not less than 14 days after they completed tuberculosis therapy; (2) patients without tuberculosis who were receiving a nevirapine-containing antiretroviral regimen for at least 3 weeks (n = 26). The population pharmacokinetics of nevirapine was described using nonlinear mixed effects modelling with NONMEM software. Based on the developed model, plasma concentration profiles after 300, 400 and 500 mg of nevirapine twice daily were simulated.

Results

Concomitant administration of rifampicin increased nevirapine oral clearance (CL/F) by 37.4% and reduced the absorption rate constant (ka) by almost sixfold. Rifampicin reduced the nevirapine average minimum concentration by 39%. Simulated doses of 300 mg twice daily elevated nevirapine concentrations above subtherapeutic levels in most patients, with minimum exposure above the recommended maximum concentration. The area under the concentration–time curve of 12-hydroxynevirapine was not different in the presence of rifampicin. 2-, 3- and 8-Hydroxynevirapine were not detectable (LLOQ = 0.025 mg/L).

Conclusion

The developed model adequately describes nevirapine population pharmacokinetics in a South African population when taken with/and in the absence of rifampicin treatment. The simulations suggest that an increased dose of 300 mg twice daily would achieve adequate nevirapine concentrations in most patients during rifampicin-containing treatment for tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sharma SK, Mohan A, Kadhiravan T (2005) HIV-TB coinfection: epidemiology, diagnosis & management. Indian J Med Res 121(4):550–567

    PubMed  CAS  Google Scholar 

  2. Corbett EL, Watt CJ, Walker N, Maher D, Williams BG, Raviglione MC, Dye C (2003) The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163(9):1009–1021

    Article  PubMed  Google Scholar 

  3. Lamson M, MacGregor T, Riska P, Erickson D, Maxfield P, Rowland L, Gigliotti M, Robinson P, Azzam S, Keirns J (1999) Nevirapine induces both CYP3A4 and CYP2B6 metabolic pathways. Clin Pharmacol Ther 65(2):137

    Article  Google Scholar 

  4. Milinkovic A, Martinez E (2004) Nevirapine in the treatment of HIV. Expert Rev Anti Infect Ther 2(3):367–373

    Article  PubMed  CAS  Google Scholar 

  5. Goodwin B, Moore LB, Stoltz CM, McKee DD, Kliewer SA (2001) Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol 60(3):427–431

    PubMed  CAS  Google Scholar 

  6. Rae JM, Johnson MD, Lippman ME, Flockhart DA (2001) Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J Pharmacol Exp Ther 299(3):849–857

    PubMed  CAS  Google Scholar 

  7. de Vries-Sluijs TE, Dieleman JP, Arts D, Huitema AD, Beijnen JH, Schutten M, van der Ende ME (2003) Low nevirapine plasma concentrations predict virological failure in an unselected HIV-1-infected population. Clin Pharmacokinet 42(6):599–605

    Article  PubMed  Google Scholar 

  8. de Jong MD, Vella S, Carr A, Boucher CA, Imrie A, French M, Hoy J, Sorice S, Pauluzzi S, Chiodo F, Weverling GJ, van der Ende ME, Frissen PJ, Weigel HM, Kauffmann RH, Lange JM, Yoon R, Moroni M, Hoenderdos E, Leitz G, Cooper DA, Hall D, Reiss P (1997) High-dose nevirapine in previously untreated human immunodeficiency virus type 1-infected persons does not result in sustained suppression of viral replication. J Infect Dis 175(4):966–970

    Article  PubMed  Google Scholar 

  9. Ramachandran G, Hemanthkumar AK, Rajasekaran S, Padmapriyadarsini C, Narendran G, Sukumar B, Sathishnarayan S, Raja K, Kumaraswami V, Swaminathan S (2006) Increasing nevirapine dose can overcome reduced bioavailability due to rifampicin coadministration. J Acquir Immune Defic Syndr 42(1):36–41

    PubMed  CAS  Google Scholar 

  10. Ribera E, Pou L, Lopez RM, Crespo M, Falco V, Ocana I, Ruiz I, Pahissa A (2001) Pharmacokinetic interaction between nevirapine and rifampicin in HIV-infected patients with tuberculosis. J Acquir Immune Defic Syndr 28(5):450–453

    PubMed  CAS  Google Scholar 

  11. Dean GL, Back DJ, de Ruiter A (1999) Effect of tuberculosis therapy on nevirapine trough plasma concentrations. AIDS 13(17):2489–2490

    Article  PubMed  CAS  Google Scholar 

  12. Autar RS, Wit FW, Sankote J, Mahanontharit A, Anekthananon T, Mootsikapun P, Sujaikaew K, Cooper DA, Lange JM, Phanuphak P, Ruxrungtham K, Burger DM (2005) Nevirapine plasma concentrations and concomitant use of rifampin in patients coinfected with HIV-1 and tuberculosis. Antivir Ther 10(8):937–943

    PubMed  CAS  Google Scholar 

  13. Manosuthi W, Sungkanuparph S, Thakkinstian A, Rattanasiri S, Chaovavanich A, Prasithsirikul W, Likanonsakul S, Ruxrungtham K (2006) Plasma nevirapine levels and 24-week efficacy in HIV-infected patients receiving nevirapine-based highly active antiretroviral therapy with or without rifampicin. Clin Infect Dis 43(2):253–255

    Article  PubMed  CAS  Google Scholar 

  14. Manosuthi W, Ruxrungtham K, Likanonsakul S, Prasithsirikul W, Inthong Y, Phoorisri T, Sungkanuparph S (2007) Nevirapine levels after discontinuation of rifampicin therapy and 60-week efficacy of nevirapine-based antiretroviral therapy in HIV-infected patients with tuberculosis. Clin Infect Dis 44(1):141–144

    Article  PubMed  CAS  Google Scholar 

  15. Riska P, Lamson M, MacGregor T, Sabo J, Hattox S, Pav J, Keirns J (1999) Disposition and biotransformation of the antiretroviral drug nevirapine in humans. Drug Metab Dispos 27(8):895–901

    PubMed  CAS  Google Scholar 

  16. Uetrecht J (2005) Role of drug metabolism for breaking tolerance and the localization of drug hypersensitivity. Toxicology 209(2):113–118

    Article  PubMed  CAS  Google Scholar 

  17. Cohen K, van Cutsem G, Boulle A, McIlleron H, Goemaere E, Smith PJ, Maartens G (2008) Effect of rifampicin-based antitubercular therapy on nevirapine plasma concentrations in South African adults with HIV-associated tuberculosis. J Antimicrob Chemother 61(2):389–393

    Article  PubMed  CAS  Google Scholar 

  18. Chi J, Jayewardene AL, Stone JA, Aweeka FT (2003) An LC-MS-MS method for the determination of nevirapine, a non-nucleoside reverse transcriptase inhibitor, in human plasma. J Pharm Biomed Anal 31(5):953–959

    Article  PubMed  CAS  Google Scholar 

  19. Beal SL, Sheiner LS (1994) NONMEM user’s guide. NONMEM Project Group, University of California at San Fransisco, San Fransisco

    Google Scholar 

  20. Jonsson EN, Karlsson MO (1999) Xpose- and S-PLUS-based population pharmacokinetic/pharmacodynamic model building aid for NONMEM. Comput Methods Programs Biomed 58(1):51–64

    Article  PubMed  CAS  Google Scholar 

  21. Ette EI (1997) Stability and performance of a population pharmacokinetic model. J Clin Pharmacol 37(6):486–495

    PubMed  CAS  Google Scholar 

  22. HIVPharmcology (2006) Optimising TDM in HIV clinical care. Virology Education BV, Utrecht, the Netherlands. http://hivpharmacology.production.tdclighthouse.com/content.cfm?lang=1&id=573&id2=639&ch=4&cid=639. Accessed 05 Nov 2007

  23. Kappelhoff BS, Crommentuyn KM, de Maat MM, Mulder JW, Huitema AD, Beijnen JH (2004) Practical guidelines to interpret plasma concentrations of antiretroviral drugs. Clin Pharmacokinet 43(13):845–853

    Article  PubMed  CAS  Google Scholar 

  24. Sabo JP, Lamson MJ, Leitz G, Yong CL, MacGregor TR (2000) Pharmacokinetics of nevirapine and lamivudine in patients with HIV-1 infection. AAPS PharmSci 2(1):E1

    Article  PubMed  CAS  Google Scholar 

  25. de Maat MM, Huitema AD, Mulder JW, Meenhorst PL, van Gorp EC, Beijnen JH (2002) Population pharmacokinetics of nevirapine in an unselected cohort of HIV-1-infected individuals. Br J Clin Pharmacol 54(4):378–385

    Article  PubMed  Google Scholar 

  26. Zhou XJ, Sheiner LB, D’Aquila RT, Hughes MD, Hirsch MS, Fischl MA, Johnson VA, Myers M, Sommadossi JP (1999) Population pharmacokinetics of nevirapine, zidovudine, and didanosine in human immunodeficiency virus-infected patients. The National Institute of Allergy and Infectious Diseases AIDS Clinical Trials Group Protocol 241 Investigators. Antimicrob Agents Chemother 43(1):121–128

    PubMed  CAS  Google Scholar 

  27. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ (1999) Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 62(1–2):25–31

    Article  PubMed  CAS  Google Scholar 

  28. Ohashi R, Kamikozawa Y, Sugiura M, Fukuda H, Yabuuchi H, Tamai I (2006) Effect of P-glycoprotein on intestinal absorption and brain penetration of antiallergic agent bepotastine besilate. Drug Metab Dispos 34(5):793–799

    Article  PubMed  CAS  Google Scholar 

  29. Almond LM, Edirisinghe D, Dalton M, Bonington A, Back DJ, Khoo SH (2005) Intracellular and plasma pharmacokinetics of nevirapine in human immunodeficiency virus-infected individuals. Clin Pharmacol Ther 78(2):132–142

    Article  PubMed  CAS  Google Scholar 

  30. Haas DW, Bartlett JA, Andersen JW, Sanne I, Wilkinson GR, Hinkle J, Rousseau F, Ingram CD, Shaw A, Lederman MM, Kim RB (2006) Pharmacogenetics of nevirapine-associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clin Infect Dis 43(6):783–786

    Article  PubMed  CAS  Google Scholar 

  31. Sun J, He ZG, Cheng G, Wang SJ, Hao XH, Zou MJ (2004) Multidrug resistance P-glycoprotein: crucial significance in drug disposition and interaction. Med Sci Monit 10(1):RA5–RA14

    PubMed  CAS  Google Scholar 

  32. van Heeswijk RP, Veldkamp AI, Mulder JW, Meenhorst PL, Wit FW, Lange JM, Danner SA, Foudraine NA, Kwakkelstein MO, Reiss P, Beijnen JH, Hoetelmans RM (2000) The steady-state pharmacokinetics of nevirapine during once daily and twice daily dosing in HIV-1-infected individuals. AIDS 14(8):F77–82

    Article  PubMed  Google Scholar 

  33. Glynn SL, Yazdanian M (1998) In vitro blood-brain barrier permeability of nevirapine compared to other HIV antiretroviral agents. J Pharm Sci 87(3):306–310

    Article  PubMed  CAS  Google Scholar 

  34. Lemmer B (1999) Chronopharmacokinetics: implications for drug treatment. J Pharm Pharmacol 51(8):887–890

    Article  PubMed  CAS  Google Scholar 

  35. Zhou S, Chan E, Lim LY, Boelsterli UA, Li SC, Wang J, Zhang Q, Huang M, Xu A (2004) Therapeutic drugs that behave as mechanism-based inhibitors of cytochrome P450 3A4. Curr Drug Metab 5(5):415–442

    Article  PubMed  CAS  Google Scholar 

  36. Wilkins JJ, Langdon G, McIlleron H, Pillai G, Smith PJ, Simonsson USH (2005) Challenges in modelling the pharmacokinetics of isoniazid in South African tuberculosis patients (abstr 769). Available at http://www.page-meeting.org/?abstract=769]

  37. Norris SH, Silverstein HH, St. George RL, Johnstone JN (1992) Nevirapine, an HIV-1 reverse transcriptase inhibitor: absorption, distribution and execretion in rats. Pharm Res 9:S263

    Google Scholar 

  38. Cheeseman SH, Hattox SE, McLaughlin MM, Koup RA, Andrews C, Bova CA, Pav JW, Roy T, Sullivan JL, Keirns JJ (1993) Pharmacokinetics of nevirapine: initial single-rising-dose study in humans. Antimicrob Agents Chemother 37(2):178–182

    PubMed  CAS  Google Scholar 

  39. Lamson MJ, Sabo JP, MacGregor TR, Pav JW, Rowland L, Hawi A, Cappola M, Robinson P (1999) Single dose pharmacokinetics and bioavailability of nevirapine in healthy volunteers. Biopharm Drug Dispos 20(6):285–291

    Article  PubMed  CAS  Google Scholar 

  40. Salomon J, de Truchis P, Melchior JC (2002) Body composition and nutritional parameters in HIV and AIDS patients. Clin Chem Lab Med 40(12):1329–1333

    Article  PubMed  CAS  Google Scholar 

  41. Olawumi HO, Olatunji PO (2006) The value of serum albumin in pretreatment assessment and monitoring of therapy in HIV/AIDS patients. HIV Med 7(6):351–355

    Article  PubMed  CAS  Google Scholar 

  42. von Hentig N, Carlebach A, Gute P, Knecht G, Klauke S, Rohrbacher M, Stocker H, Kurowski M, Harder S, Staszewski S, Haberl A (2006) A comparison of the steady-state pharmacokinetics of nevirapine in men, nonpregnant women and women in late pregnancy. Br J Clin Pharmacol 62(5):552–559

    Article  CAS  Google Scholar 

  43. Dailly E, Billaud E, Reliquet V, Breurec S, Perre P, Leautez S, Jolliet P, Bourin M, Raffi F (2004) No relationship between high nevirapine plasma concentration and hepatotoxicity in HIV-1-infected patients naive of antiretroviral treatment or switched from protease inhibitors. Eur J Clin Pharmacol 60(5):343–348

    Article  PubMed  CAS  Google Scholar 

  44. Erickson DA, Mather G, Trager WF, Levy RH, Keirns JJ (1999) Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 27(12):1488–1495

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for the study was received from Médecins Sans Frontières, South Africa and the South African National Department of Health, Research programme for the operational plan for comprehensive HIV and AIDS care, treatment and management for South Africa.

The study was performed in compliance with South African laws. The authors would like to thank Dr. Justin Wilkins for his help with formatting the visual predictive check plots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrika S. H. Simonsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elsherbiny, D., Cohen, K., Jansson, B. et al. Population pharmacokinetics of nevirapine in combination with rifampicin-based short course chemotherapy in HIV- and tuberculosis-infected South African patients. Eur J Clin Pharmacol 65, 71–80 (2009). https://doi.org/10.1007/s00228-008-0481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-008-0481-y

Keywords

Navigation