Skip to main content
Log in

Estimation of the area under the concentration-time curve of racemic lansoprazole by using limited plasma concentration of lansoprazole enantiomers

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to identify the common time point that gives plasma concentrations of lansoprazole enantiomers that adequately reflect the AUC of racemic lansoprazole.

Methods

A randomized, double-blind, placebo-controlled, crossover study in three phases was conducted at intervals of 2 weeks. Eighteen healthy Japanese volunteers, including three CYP2C19 genotype groups, took a single 60-mg oral dose of lansoprazole after 6 days of pretreatment, with either clarithromycin (800 mg/day), fluvoxamine (50 mg/day), or a placebo. Multiple linear regression analysis was used to identify the most informative sampling times of (R)- and (S)-lansoprazole, using one to three samples to estimate the AUC0−∞ of racemic lansoprazole.

Results

The best R 2 in each prediction formula for the AUC of racemic lansoprazole using one, two, and three sampling points of (R)- and (S)-lansoprazole based on the data sets from all three pretreatment groups (n = 54) were 0.897, 0.930, and 0.929, respectively. The best prediction formula for the AUC of racemic lansoprazole, using the fewest sampling points of (R)- and (S)-lansoprazole, was \({\text{AUC}} = 6.5 \times {\text{C}}_{{{\text{3h}}}} \;{\text{of}}\;{\left( {\text{R}} \right)}{\text{ - lansoprazole}}\; + 13.7 \times {\text{C}}_{{{\text{3h}}}} \;{\text{of}}\;{\left( {\text{S}} \right)}{\text{ - lansoprazole}} - 9,917.3 \times {\text{G}}1 - 14,387.2 \times {\text{G}}2 + 7,103.6\) (P < 0.001), where C3h is the plasma concentration 3 h after administration, G1 = 1 for the homozygous extensive metabolizer (EM) and 0 for the other genotypes, G2 = 1 for the heterozygous EM and 0 for the other genotypes.

Conclusions

C3h monitoring of (R)- and (S)-lansoprazole is a useful time point to estimate the AUC of racemic lansoprazole. This method of plasma concentration monitoring at a few time points within 3 h might be more suitable for AUC estimation than CYP2C19 genotyping, particularly when lansoprazole is co-administered with CYP inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nagaya H, Satoh H, Maki Y (1990) Possible mechanism for the inhibition of acid formation by the proton pump inhibitor AG-1749 in isolated canine parietal cells. J Pharmacol Exp Ther 252:1289–1295

    PubMed  CAS  Google Scholar 

  2. Furuta T, Shirai N, Sugimoto M, Ohashi K, Ishizaki T (2004) Pharmacogenomics of proton pump inhibitors. Pharmacogenomics 5:181–202

    Article  PubMed  CAS  Google Scholar 

  3. Ferguson RJ, De Morais SM, Benhamou S, Bouchardy C, Blaisdell J, Ibeanu G, Wilkinson GR, Sarich TC, Wright JM, Dayer P, Goldstein JA (1998) A new genetic defect in human CYP2C19: mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther 284:356–361

    PubMed  CAS  Google Scholar 

  4. Kim KA, Shon JH, Park JY, Yoon YR, Kim MJ, Yun DH, Kim MK, Cha IJ, Hyun MH, Shin JG (2002) Enantioselective disposition of lansoprazole in extensive and poor metabolizers of CYP2C19. Clin Pharmacol Ther 72:90–99

    Article  PubMed  CAS  Google Scholar 

  5. Ieiri I, Kishimoto Y, Okochi H, Momiyama K, Morita T, Kitano M, Morisawa T, Fukushima Y, Nakagawa K, Hasegawa J, Otsubo K, Ishizaki T (2001) Comparison of the kinetic disposition of and serum gastrin change by lansoprazole versus rabeprazole during an 8-day dosing scheme in relation to CYP2C19 polymorphism. Eur J Clin Pharmacol 57:485–492

    Article  PubMed  CAS  Google Scholar 

  6. Miura M, Tada H, Yasui-Furukori N, Uno T, Sugawara K, Tateishi T, Suzuki T (2004) Pharmacokinetic differences between the enantiomers of lansoprazole and its metabolite, 5-hydroxylansoprazole, in relation to CYP2C19 genotypes. Eur J Clin Pharmacol 60:623–628

    Article  PubMed  CAS  Google Scholar 

  7. Kim KA, Kim MJ, Park JY, Shon JH, Yoon YR, Lee SS, Liu KH, Chun JH, Hyun MH, Shin JG (2003) Stereoselective metabolism of lansoprazole by human liver cytochrome P450 enzymes. Drug Metab Dispos 31:1227–1234

    Article  PubMed  CAS  Google Scholar 

  8. Katsuki H, Hamada A, Nakamura C, Arimori K, Nakano M (2001) Role of CYP3A and CYP2C19 in the stereoselective metabolism of lansoprazole by human liver microsomes. Eur J Clin Pharmacol 57:709–715

    Article  PubMed  CAS  Google Scholar 

  9. Miura M, Tada H, Yasui-Furukori N, Uno T, Sugawara K, Tateishi T, Suzuki T (2005) Enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes in the presence of fluvoxamine. Br J Clin Pharmacol 60:61–68

    Article  PubMed  CAS  Google Scholar 

  10. Miura M (2006) Enantioselective disposition of lansoprazole and rabeprazole in human plasma. Yakugaku Zasshi 126:395–402

    Article  PubMed  CAS  Google Scholar 

  11. Furuta T, Shirai N, Xiao F, Ohashi K, Ishizaki T (2001) Effect of high-dose lansoprazole on intragastic pH in subjects who are homozygous extensive metabolizers of cytochrome P4502C19. Clin Pharmacol Ther 70:484–492

    Article  PubMed  CAS  Google Scholar 

  12. Horai Y, Kimura M, Furuie H, Matsuguma K, Irie S, Koga Y, Nagahama T, Murakami M, Matsui T, Yao T, Urae A, Ishizaki T (2001) Pharmacodynamic effects and kinetic disposition of rabeprazole in relation to CYP2C19 genotypes. Aliment Pharmacol Ther 15:793–803

    Article  PubMed  CAS  Google Scholar 

  13. Furuta T, Ohashi K, Kosuge K, Zhao XJ, Takashima M, Kimura M, Nishimoto M, Hanai H, Kaneko E, Ishizaki T (1999) CYP2C19 genotype status and effect of omeprazole on intragastric pH in humans. Clin Pharmacol Ther 65:552–561

    Article  PubMed  CAS  Google Scholar 

  14. Christensen M, Tybring G, Mihara K, Yasui-Furokori N, Carrillo JA, Ramos SI, Andersson K, Dahl ML, Bertilsson L (2002) Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther 71:141–152

    Article  PubMed  CAS  Google Scholar 

  15. Figgitt DP, McClellan KJ (2000) Fluvoxamine, an updated review of its use in the management of adults with anxiety disorders. Drugs 60:925–954

    Article  PubMed  CAS  Google Scholar 

  16. Yasui-Furukori N, Saito M, Uno T, Takahata T, Sugawara K, Tateishi T (2004) Effects of fluvoxamine on lansoprazole pharmacokinetics in relation to CYP2C19 genotypes. J Clin Pharmacol 44:1223–1229

    Article  PubMed  CAS  Google Scholar 

  17. Moore KH, Leese PT, McNeal S, Gray P, O’Quinn S, Bye C, Sale M (2002) The pharmacokinetics of sumatriptan when administered with clarithromycin in healthy volunteers. Clin Ther 24:583–594

    Article  PubMed  CAS  Google Scholar 

  18. Ushiama H, Echizen H, Nachi S, Ohnishi A (2002) Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol. Clin Pharmacol Ther 72:33–43

    Article  PubMed  CAS  Google Scholar 

  19. Saito M, Yasui-Furukori N, Uno T, Takahata T, Sugawara K, Munakata A, Tateishi T (2005) Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes. Br J Clin Pharmacol 59:302–309

    Article  PubMed  CAS  Google Scholar 

  20. Miura M, Tada H, Yasui-Furukori N, Uno T, Sugawara K, Tateishi T, Suzuki T (2005) Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes. Chirality 17:338–344

    Article  PubMed  CAS  Google Scholar 

  21. De Morais SM, Wilkinson GR, Blaisdell J, Meyer UA, Nakamura K, Goldstein JA (1994) Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol 46:594–598

    PubMed  Google Scholar 

  22. Miura M, Tada H, Suzuki T (2004) Simultaneous determination of lansoprazole enantiomers and their metabolites in plasma by liquid chromatography with solid-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 804:389–395

    Article  PubMed  CAS  Google Scholar 

  23. Uno T, Yasui-Furukori N, Takahata T, Sugawara K, Tateishi T (2005) Determination of lansoprazole and two of its metabolites by liquid-liquid extraction and automated column-switching high-performance liquid chromatography: application to measuring CYP2C19 activity. J Chromatogr B Analyt Technol Biomed Life Sci 816:309–314

    Article  PubMed  CAS  Google Scholar 

  24. Niioka T, Yasui-Furukori N, Uno T, Sugawara K, Kaneko S, Tateishi T (2006) Identification of a single time-point for plasma lansoprazole measurement that adequately reflects area under the concentration-time curve. Ther Drug Monit 28:321–325

    Article  PubMed  CAS  Google Scholar 

  25. Rodighiero V (1999) Effects of liver disease on pharmacokinetics. An update. Clin Pharmacokinet 37:399–431

    Article  PubMed  CAS  Google Scholar 

  26. Delhotal-Landes B, Flouvat B, Duchier J, Molinie P, Dellatolas F, Lemaire M (1993) Pharmacokinetics of lansoprazole in patients with renal or liver disease of varying severity. Eur J Clin Pharmacol 45:367–371

    Article  PubMed  CAS  Google Scholar 

  27. Hussein Z, Granneman GR, Mukherjee D, Samara E, Hogan DL, Koss MA, Isenberg JI (1993) Age-related differences in the pharmacokinetics and pharmacodynamics of lansoprazole. Br J Clin Pharmacol 36:391–398

    PubMed  CAS  Google Scholar 

  28. Furuta T, Sugimoto M, Shirai N, Ishizaki T (2007) CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics 8:1199–1210

    Article  PubMed  CAS  Google Scholar 

  29. Chong E, Ensom MH (2003) Pharmacogenetics of the proton pump inhibitors: a systematic review. Pharmacotherapy 23:460–471

    Article  PubMed  CAS  Google Scholar 

  30. Padol S, Yuan Y, Thabane M, Padol IT, Hunt RH (2006) The effect of CYP2C19 polymorphisms on H. pylori eradication rate in dual and triple first-line PPI therapies: a meta-analysis. Am J Gastroenterol 101:1467–1475

    Article  PubMed  CAS  Google Scholar 

  31. Furuta T, Shirai N, Watanabe F, Honda S, Takeuchi K, Iida T, Sato Y, Kajimura M, Futami H, Takayanagi S, Yamada M, Ohashi K, Ishizaki T, Hanai H (2002) Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin Pharmacol Ther 72:453–460

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masatomo Miura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niioka, T., Miura, M., Uno, T. et al. Estimation of the area under the concentration-time curve of racemic lansoprazole by using limited plasma concentration of lansoprazole enantiomers. Eur J Clin Pharmacol 64, 503–509 (2008). https://doi.org/10.1007/s00228-007-0455-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0455-5

Keywords

Navigation