Skip to main content
Log in

Drug interaction between oral atorvastatin and verapamil in healthy subjects: effects of atorvastatin on the pharmacokinetics of verapamil and norverapamil

  • Clinical Trial
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Aim

It has been reported that verapamil and atorvastatin are inhibitors of both P-glycoprotein (P-gp) and microsomal cytochrome P450 (CYP) 3A4, and verapamil is a substrate of both P-gp and CYP3A4. Thus, it could be expected that atorvastatin would alter the absorption and metabolism of verapamil.

Methods

The pharmacokinetic parameters of verapamil and one of its metabolites, norverapamil, were compared after oral administration of verapamil (60 mg) in the presence or absence of oral atorvastatin (40 mg) in 12 healthy volunteers.

Results

Pharmacokinetics of verapamil were significantly altered by the coadministration of atorvastatin compared with those of without atorvastatin. For example, the total area under the plasma-concentration time curve to the last measured time, 24 h, in plasma (AUC0−24 h) of verapamil increased significantly by 42.8%. Thus, the relative bioavailability increased by the same magnitude with atorvastatin. Although the AUC0−24 h of norverapamil was not significantly different between two groups of humans, the AUC0−24 h, norverapamil/ AUC0−24 h, verapamil ratio was significantly reduced (27.5% decrease) with atorvastatin.

Conclusion

The above data suggest that atorvastatin could inhibit the absorption of verapamil via inhibition of P-gp and/or the metabolism of verapamil by CYP3A4 in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17(4):149–166

    Article  CAS  Google Scholar 

  2. Gould BA, Mann S, Kieso H, Subramanian VB, Raftery EB (1982) The 24-hour ambulatory blood pressure profile with verapamil. Circulation 65(1):22–27

    PubMed  CAS  Google Scholar 

  3. Lewis GR, Morley KD, Lewis BM, Bones PJ (1978) The treatment of hypertension with verapamil. NZ Medical J 87(612):351–354

    CAS  Google Scholar 

  4. Michel T (2006) Treatment of myocardial ischemia. In: Brunton LL, Lazo JS, Pharker KC (eds) Goodman & Gilmans. The Pharmacological Basics of Therapeutics . McGraw-Hill, New York, pp. 823–844

    Google Scholar 

  5. Schomerus M, Spiegelhaider B, Stieren B, Eichelbaum M (1976) Physiologic disposition of verapamil in man. Cardiovasc Res 10(1):605–612

    Article  PubMed  CAS  Google Scholar 

  6. Eichelbaum M, Remberg EG, Schomerus M, Dengler HJ (1979) The metabolism of DL-[14C]verapamil in man. Drug Metab Dispos 7(3):145–148

    PubMed  CAS  Google Scholar 

  7. Adachi Y, Suzuki H, Sugiyama Y (2001) Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm Res 18(12):1660–1668

    Article  PubMed  CAS  Google Scholar 

  8. Pauli-Magnus C, von Richter O, Burk O, Ziegler A, Mettang T, Eichelbaum M et al (2000) Characterization of the major metabolites of verapamil as substrates and inhibitors of P-glycoprotein. J Pharmacol Exp Ther 293(2):376–382

    PubMed  CAS  Google Scholar 

  9. Doppenschmitt S, Spahn-Langguth H, Regardh CG, Langguth P (1999) Role of P-glycoprotein-mediated secretion in absorptive drug permeability: an approach using passive membrane permeability and affinity to P-glycoprotein. J Pharm Sci 88(10):1067–1072

    Article  PubMed  CAS  Google Scholar 

  10. Fakhoury M, Litalien C, Medard Y, Cavé H, Ezzahir N, Peuchmaur M et al (2005) Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metab Dispos 33(11):1603–1607

    Article  PubMed  CAS  Google Scholar 

  11. Wang E, Lew K, Barecki M, Casciano CN, Clement RP, Johnson WW (2001) Quantitative distinctions of active site molecular recognition by P-glycoprotein and cytochrome P450 3A4. Chem Res Toxicol 14(12):1596–1603

    Article  PubMed  CAS  Google Scholar 

  12. Tsuruo T, Iida H, Naganuma K, Tsukagoshi S, Sakurai Y (1983) Promotion by verapamil of vincristine responsiveness in tumor cell lines inherently resistant to the drug. Cancer Res 43(2):808–813

    PubMed  CAS  Google Scholar 

  13. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1983) Potentiation of vincristine and adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res 43(5):2267–2272

    PubMed  CAS  Google Scholar 

  14. Wacher VJ, Wu CY, Benet LZ (1995) Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog 13(3):129–134.

    Article  PubMed  CAS  Google Scholar 

  15. Lea AP, McTavish D (1997) Atorvastatin: a review of its pharmacology and therapeutic potential in the management of hyperlipidaemias. Drug 53(5):828–847

    CAS  Google Scholar 

  16. Lennernas H (2003) Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet 42(13):1141–1160

    Article  PubMed  Google Scholar 

  17. Boyd RA, Stern RH, Stewart BH, Wu X, Reyner EL, Zegarac EA et al (2000) Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol 40(1):91–98

    Article  PubMed  CAS  Google Scholar 

  18. Wu X, Whitheld LR, Stewart BH (2000) Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and proton-monocarboxylic acid co-transporter. Pharm Res 17(2):209–215

    Article  PubMed  CAS  Google Scholar 

  19. Holtzman CW, Wiggins BS, Spinler SA (2006) Role of P-glycoprotein in statin drug interactions. Pharmacotherapy 26(11):1601–1607

    Article  PubMed  CAS  Google Scholar 

  20. McDonnell CG, Shorten G, Van Pelt FN (2005) Effect of atorvastatin and fluvastatin on the metabolism of midazolam by cytochrome P450 in vitro. Anaesthesia 60(8):747–753

    Article  CAS  Google Scholar 

  21. Neuvonen PJ, Niemi M, Backman JT (2006) Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther 80(6):565–581

    Article  PubMed  CAS  Google Scholar 

  22. Kantola T, Kivisto KT, Neuvonen PJ (1998) Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 64(2):177–182

    Article  PubMed  CAS  Google Scholar 

  23. Choi JS, Han HK (2004) The effect of quercetin on the pharmacokinetics of verapamil and its major metabolite, norverapamil, in rabbits. J Pharm Pharmacol 56(12):1537–1542

    Article  PubMed  CAS  Google Scholar 

  24. Chiou WL (1978) Critical evaluation of potential error in pharmacokinetic studies using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. J Pharmacokinet Biopharm 6(6):539–546

    Article  PubMed  CAS  Google Scholar 

  25. Benet LZ, Cummins CL, Wu CY (2003) Transporter-enzyme interactions: implications for predicting drug-drug interactions from in vitro data. Curr Drug Metab 4(5):393–398

    Article  PubMed  CAS  Google Scholar 

  26. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) Grapefruit juice increased serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther 66(2):118–127

    PubMed  CAS  Google Scholar 

  27. Siedlik PH, Olson SC, Yang BB, Stern RH (1999) Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 39(5):501–504

    PubMed  CAS  Google Scholar 

  28. Renders L, Mayer-Kadner I, Koch C, Scharffe S, Burkhardt K, Veelken R et al (2001) Efficacy and drug interactions of the new HMG-CoA reductase inhibitors cerivastatin and atorvastatin in CsA-treated renal transplant recipients. Nephrol Dial Transplant 16(1):141–146

    Article  PubMed  CAS  Google Scholar 

  29. Wang E, Casciano CN, Clement RP, Johnson WW (2001) HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 18(6):800–806

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Shik Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, DH., Shin, WG. & Choi, JS. Drug interaction between oral atorvastatin and verapamil in healthy subjects: effects of atorvastatin on the pharmacokinetics of verapamil and norverapamil. Eur J Clin Pharmacol 64, 445–449 (2008). https://doi.org/10.1007/s00228-007-0447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-007-0447-5

Keywords

Navigation