Skip to main content

Advertisement

Log in

Microbiome changes in Sinularia spp. soft corals relative to health status

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Coral reefs are globally important ecosystems with high species diversity at both the macro and micro scales. In recent years, coral reefs have been heavily impacted by anthropogenic and natural stressors, including emerging diseases. Many of these diseases have been identified in reef-building corals, but other invertebrate taxa, such as soft corals, are increasingly at risk. This study focuses on a hybrid species complex within soft corals of the genus Sinularia, which dominate the shallow reefs of Guam, and the broader Indo-Pacific. These soft corals exhibit varying levels of disease susceptibility to Sinularia tissue loss disease (STLD), a chronic wasting disease. In the current study, we used next-generation amplicon sequencing of prokaryotic and eukaryotic communities within these soft corals to characterize their microbiomes, and develop a better understanding of the etiology of STLD. There were differences in specific ASVs across the microbiomes of healthy colonies of Sinularia maxima, Sinularia polydactyla and their hybrid (S. maxima x S. polydactyla). There was also a decline in the relative abundance of putatively beneficial symbionts (Symbiodinaceae and Endozoicomonas) in STLD-affected soft corals, but no consistent shifts towards a specific microbial community associated with STLD. The soft coral microbiomes also contained a high relative abundance of ASVs typically associated with terrestrial runoff. Our results suggest that the STLD phenotype may be due to a combination of factors, including infection by a yet unknown etiologic agent, shifts in putatively beneficial symbionts, and anthropogenic impacts on this shallow nearshore reef.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data and/or code availability

Raw sequence data are published in the sequence read archive at NCBI under the BioProject PRJNA544301; metadata and processed data are provided in supplementary files. No new codes were developed for this project.

References

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4(7):e6372

    PubMed  PubMed Central  ADS  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Syst 34:661–689

    Google Scholar 

  • Baker AC, Cunning R (2015) Coral “bleaching” as a generalized stress response to environmental disturbance. In: Woodley CM, Downs CA, Bruckner AW, Porter JW, Galloway SB (eds) Diseases of coral. Wiley, New York, pp 396–409

    Google Scholar 

  • Baker DM, Freeman CJ, Knowlton N, Thacker RW, Kim K, Fogel ML (2015) Productivity links morphology, symbiont specificity and bleaching in the evolution of Caribbean octocoral symbioses. ISME J 9(12):2620

    PubMed  PubMed Central  Google Scholar 

  • Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013a) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol 79:4759–4762

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bayer T, Arif C, Ferrier-Pagès C, Zoccola D, Aranda M, Voolstra CR (2013b) Bacteria of the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral Eunicella cavolini. Mar Ecol Prog Ser 479:75–84

    CAS  ADS  Google Scholar 

  • Bourne D, Iida Y, Uthicke S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2(4):350

    CAS  PubMed  Google Scholar 

  • Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GM, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J 7:1452–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bourne DG, Morrow KM, Webster NS (2016) Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Ann Rev Microbiol 70:317–340

    CAS  Google Scholar 

  • Brener-Raffalli K, Clerissi C, Vidal-Dupiol J et al (2018) Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. Microbiome 6:39. https://doi.org/10.1186/s40168-018-0423-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2(8):e711

    PubMed  PubMed Central  ADS  Google Scholar 

  • Bruno JF, Petes LE, Harvell CD, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056–1061

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ et al (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cárdenas A, Rodriguez LM, Pizarro V, Cadavid LF, Arévalo-Ferro C (2012) Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISME J 6:502–512

    PubMed  Google Scholar 

  • Ceh J, Van Keulen M, Bourne DG (2011) Coral-associated bacterial communities on Ningaloo Reef, Western Australia. FEMS Microbiol Ecol 75:134–144

    CAS  PubMed  Google Scholar 

  • Cervino JM, Hauff B, Haslun JA et al (2012) Ulcerated yellow spot syndrome: implications of aquaculture-related pathogens associated with soft coral Sarcophyton ehrenbergi tissue lesions. Dis Aquat Org 102:137–148

    CAS  Google Scholar 

  • Cleary DF, Swierts T, Coelho FJ et al (2019) The sponge microbiome within the greater coral reef microbial metacommunity. Nat Commun 10:1644. https://doi.org/10.1038/s41467-019-09537-8

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Cornish AS, DiDonato EM (2004) Resurvey of a reef flat in American Samoa after 85 years reveals devastation to a soft coral (Alcyonacea) community. Mar Poll Bull 48:768–777

    CAS  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dinesen ZD (1983) Patterns in the distribution of soft corals across the central Great Barrier Reef. Coral Reefs 1:229–236

    ADS  Google Scholar 

  • Fabricius K, Alderslade PJ (2001) Soft corals and sea fans: a comprehensive guide to the tropical shallow water genera of the Central-West Pacific, the Indian Ocean and the Red Sea. AIMS Publications, Townsville

    Google Scholar 

  • Frias-Lopez J, Zerkle AL, Bonheyo GT, Fouke BW (2002) Partitioning of bacterial communities between seawater and healthy, black band diseased, and dead coral surfaces. Appl Environ Microbiol 68:2214–2228

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Futch JC, Griffin DW, Lipp EK (2010) Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys. Environ Microbiol 12:964–974

    CAS  PubMed  Google Scholar 

  • Garrison VH, Shinn EA, Foreman WT, Griffin DW, Holmes CW (2003) African and Asian dust: from desert soils to coral reefs. Bioscience 53:469–480

    Google Scholar 

  • Gochfeld DJ, Aeby GS (2008) Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar Ecol Prog Ser 362:119–128

    ADS  Google Scholar 

  • Gochfeld DJ, Ankisetty S, Slattery M (2015) Proteomic profiling of healthy and diseased hybrid soft corals Sinularia maxima x polydactyla. Dis Aquat Org 116:133–141

    Google Scholar 

  • Hervé M (2022) Package “RVAideMemoire”: testing and plotting procedures for biostatistics, Version 0.9-81-2

  • Kim K, Harvell CD, Kim PD, Smith GW, Merkel SM (2000) Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.). Mar Biol 136:259–267

    Google Scholar 

  • Kimes NE, Van Nostrand JD, Weil E, Zhou J, Morris PJ (2010) Microbial functional structure of Montastraea faveolata, an important Caribbean reef-building coral, differs between healthy and yellow-band diseased colonies. Environ Microbiol 12:541–556

    CAS  PubMed  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci 98:5419–5425

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc Lond B Biol Sci 280:20122328. https://doi.org/10.1098/rspb.2012.2328

    Article  Google Scholar 

  • Kvennefors ECE, Sampayo E, Kerr C, Vieira G, Roff G, Barnes AC (2012) Regulation of bacterial communities through antimicrobial activity by the coral holobiont. Microb Ecol 63:605–618

    CAS  PubMed  ADS  Google Scholar 

  • Landsberg JH, Kiryu Y, Peters EC et al (2020) Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Front Mar Sci 7:576013

    Google Scholar 

  • Lema KA, Willis BL, Bourne DG (2012) Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl Environ Microbiol 78:3136–3144

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral Reefs: an ecosystem in transition. Springer, Dordrecht, pp 405–419

    Google Scholar 

  • Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000

    CAS  PubMed  ADS  Google Scholar 

  • Lesser MP, Bythell JC, Gates RD, Johnstone RW, Hoegh-Guldberg O (2007) Are infectious diseases really killing corals? Alternative interpretations of the experimental and ecological data. J Exp Mar Biol Ecol 346:36–44

    Google Scholar 

  • Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Google Scholar 

  • Martin B, Witten D, Willis A (2022) _corncob: Count Regression for Correlated Observations with the Beta-Binomial_. R package version 0.3.1. https://CRAN.R-project.org/package=corncob. Accessed Jan 2023

  • McCauley M, Goulet TL, Jackson CR, Loesgen S (2023) Systematic review of cnidarian microbiomes reveals insights into the structure, specificity, and fidelity of marine associations. Nat Commun 14:4899. https://doi.org/10.1038/s41467-023-39876-6

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Meyer JL, Paul VJ, Teplitski M (2014) Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS One 9(6):e100316

    PubMed  PubMed Central  ADS  Google Scholar 

  • Muscatine LR, McCloskey LE, Marian R (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    CAS  ADS  Google Scholar 

  • Mydlarz LD, Fuess L, Mann W, Pinzón JH, Gochfeld DJ (2016) Cnidarian immunity: from genomes to phenomes. In: Goffredo S, Dubinsky Z (eds) The cnidaria, past, present and future: the world of medusa and her sisters. Springer, Cham, pp 441–466

    Google Scholar 

  • Neave MJ, Michell CT, Apprill A, Voolstra CR (2014) Whole-genome sequences of three symbiotic Endozoicomonas strains. Genome Announc 2(4):e00802-e814

    PubMed  PubMed Central  Google Scholar 

  • Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol 100:8315–8324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR (2017) Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales. ISME J 11:186–200

    PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M et al (2018) Vegan: community ecology package, R package version 2.4

  • Olson JB, Easson CG, Gochfeld DJ (2021) Temporal changes in the sponge holobiont during the course of infection with Aplysina Red Band Syndrome. Corarl Reefs 40:1211–1226

    Google Scholar 

  • Osman EO, Suggett DJ, Voolstra CR et al (2020) Coral microbiome composition along the northern Red Sea suggests high plasticity of bacterial and specificity of endosymbiotic dinoflagellate communities. Microbiome 8:8. https://doi.org/10.1186/s40168-019-0776-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostfeld RS, Keesing F (2012) Effects of host diversity on infectious disease. Ann Rev Ecol Evol Syst 43:157–182

    Google Scholar 

  • Page CA, Willis BL (2008) Epidemiology of skeletal eroding band on the Great Barrier Reef and the role of injury in the initiation of this widespread coral disease. Coral Reefs 27:257–272

    ADS  Google Scholar 

  • Page CA, Baker DM, Harvell CD, Golbuu Y, Raymundo L, Neale SJ, Rosell KB, Rypien KL, Andras JP, Willis BL (2009) Influence of marine reserves on coral disease prevalence. Dis Aquat Org 87:135–150

    Google Scholar 

  • Pantos O, Bongaerts P, Dennis PG, Tyson GW, Hoegh-Guldberg O (2015) Habitat-specific environmental conditions primarily control the microbiomes of the coral Seriatopora hystrix. ISME J 9:1916–1927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JS, Han J, Suh SS, Kim HJ, Lee TK, Jung SW (2022) Characterization of bacterial community structure in two alcyonacean soft corals (Litophyton sp. and Sinularia sp.) from Chuuk, Micronesia. Coral Reefs 41:563–574

    Google Scholar 

  • Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR (2018) Dominance of Endozoicomonas bacteria throughout coral bleaching and mortality suggests structural inflexibility of the Pocillopora verrucosa microbiome. Ecol Evol 8:2240–2252

    PubMed  PubMed Central  Google Scholar 

  • Pollock FJ, Wada N, Torda G, Willis BL, Bourne DG (2017) White syndrome-affected corals have a distinct microbiome at disease lesion fronts. Appl Environ Microbiol 83(2):e02799-e2816

    PubMed  ADS  Google Scholar 

  • Precht WF, Gintert BE, Robbart ML, Fura R, van Woesik R (2016) Unprecedented disease-related coral mortality in Southeastern Florida. Sci Rep 6:1–11

    Google Scholar 

  • Quast C, Pruesse E, Gerken J, Schweer T, Yilmaz P, Peplies J, Glöckner FO (2015) SILVA databases. In: Nelson KE (ed) Encyclopedia of metagenomics: Genes, genomes and metagenomes. Springer, Boston, pp 626–635

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed Jan 2023

  • Raina JB, Tapiolas D, Willis BL, Bourne DG (2009) Coral-associated bacteria and their role in the biogeochemical cycling of sulfur. Appl Environ Microbiol 75:3492–3501

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Riegl B, Piller WE (1999) Coral frameworks revisited–reefs and coral carpets in the northern Red Sea. Coral Reefs 18:241–253

    Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    CAS  ADS  Google Scholar 

  • Roder C, Arif C, Daniels C, Weil E, Voolstra CR (2014) Bacterial profiling of White Plague Disease across corals and oceans indicates a conserved and distinct disease microbiome. Mol Ecol 23:965–974

    PubMed  PubMed Central  Google Scholar 

  • Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. Trends Ecol Evol 27:404–413

    PubMed  Google Scholar 

  • Roff G, Kvennefors ECE, Ulstrup KE, Fine M, Hoegh-Guldberg O (2008) Coral disease physiology: the impact of Acroporid white syndrome on Symbiodinium. Coral Reefs 27:373–377

    ADS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    ADS  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    CAS  PubMed  Google Scholar 

  • Rua CP, Trindade-Silva AE, Appolinario LR et al (2014) Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis. PeerJ 2:e419

    PubMed  PubMed Central  Google Scholar 

  • Ruiz-Moreno D, Willis BL, Page AC, Weil E, Cróquer A (2012) Global coral disease prevalence associated with sea temperature anomalies and local factors. Dis Aquat Org 100:249–261

    Google Scholar 

  • Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    CAS  PubMed  Google Scholar 

  • Selig ER, Harvell CD, Bruno JF et al (2006) Analyzing the relationship between ocean temperature anomalies and coral disease outbreaks at broad spatial scales. In: Phinney JT, Hoegh-Guldberg O, Kleypas J, Skirving W, Strong A (eds) Coral Reefs and climate change: science and management. Coastal and estuarine studies, vol 61. AGU, Washington DC, pp 111–128

    Google Scholar 

  • Shiu JH, Tang SL (2019) The bacteria Endozoicomonas: community dynamics, diversity, genomes, and potential impacts on corals. In: Li Z (ed) Symbiotic microbiomes of coral reefs sponges and corals. Springer, Dordrecht, pp 55–67

    Google Scholar 

  • Shore A, Caldwell JM (2019) Modes of coral disease transmission: how do diseases spread between individuals and among populations? Mar Biol 166:1–14

    Google Scholar 

  • Shore-Maggio A, Runyon CM, Ushijima B, Aeby GS, Callahan SM (2015) Differences in bacterial community structure in two color morphs of the Hawaiian reef coral Montipora capitata. Appl Environ Microbiol 81:7312–7318

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Silverstein RN, Correa AM, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B Biol Sci 279:2609–2618

    Google Scholar 

  • Silverstein RN, Cunning R, Baker AC (2015) Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Change Biol 21:236–249

    ADS  Google Scholar 

  • Slattery M, Gochfeld DJ (2012) Chemical interactions among marine competitors, and host-pathogens. In: Fattorusso E, Gerwick WH, Taglialatela-Scafati O (eds) Handbook of marine natural products. Springer, New York, pp 824–859

    Google Scholar 

  • Slattery M, Gochfeld DJ (2016) Butterflyfishes exhibit species-specific responses to changes in Pacific coral reef benthic communities. Mar Biol 163:246–258

    Google Scholar 

  • Slattery M, Paul VJ (2008) Indirect effects of bleaching on predator deterrence in the tropical Pacific soft coral Sinularia maxima. Mar Ecol Prog Ser 354:169–179

    ADS  Google Scholar 

  • Slattery M, Starmer J, Paul VJ (2001) Temporal and spatial variation in defensive metabolites of the tropical Pacific soft corals Sinularia maxima and S. polydactyla. Mar Biol 138:1183–1193

    CAS  Google Scholar 

  • Slattery M, Kamel HN, Ankisetty S, Gochfeld DJ, Hoover CA, Thacker RW (2008) Hybrid vigor in a tropical Pacific soft-coral community. Ecol Monogr 78:423–443

    Google Scholar 

  • Slattery M, Renegar DA, Gochfeld DJ (2013) Direct and indirect effects of a new disease of alcyonacean soft corals. Coral Reefs 32:879–889

    ADS  Google Scholar 

  • Slattery M, Pankey MS, Lesser MP (2019) Annual thermal stress increases a soft coral’s susceptibility to bleaching. Sci Rep 9:8064

    PubMed  PubMed Central  ADS  Google Scholar 

  • Stat M, Loh WKW, LaJeunesse TC, Hoegh-Guldberg O, Carter DA (2009) Stability of coral-endosymbiont associations during and after a thermal stress event in the southern Great Barrier Reef. Coral Reefs 28:709–713

    ADS  Google Scholar 

  • Tonk L, Sampayo EM, Chai A, Schrameyer V, Hoegh-Guldberg O (2017) Symbiodinium (Dinophyceae) community patterns in invertebrate hosts from inshore marginal reefs of the southern Great Barrier Reef, Australia. J Phycol 53:589–600

    CAS  PubMed  Google Scholar 

  • van de Water JA, Allemand D, Ferrier-Pagès C (2018) Host-microbe interactions in octocoral holobionts-recent advances and perspectives. Microbiome 6:64. https://doi.org/10.1186/s40168-018-0431-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Vega-Thurber RL, Correa AM (2011) Viruses of reef-building scleractinian corals. J Exp Mar Biol Ecol 408:102–113

    Google Scholar 

  • Vega-Thurber RL, Burkepile DE, Fuchs C, Shantz AA, McMinds R, Zaneveld JR (2014) Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob Change Biol 20:544–554

    ADS  Google Scholar 

  • Vega-Thurber R, Mydlarz LD, Brandt M, Harvell D, Weil E, Raymundo L, Willis BL, Langevin S, Tracy AM, Littman R, Kemp KM, Dawkins P, Prager KC, Garren M, Lamb J (2020) Deciphering coral disease dynamics: integrating host, microbiome, and the changing environment. Front Ecol Evol 8:575927. https://doi.org/10.3389/fevo.2020.575927

    Article  Google Scholar 

  • Vestheim H, Jarman SN (2008) Blocking primers to enhance PCR amplification of rare sequences in mixed samples–a case study on prey DNA in Antarctic krill stomachs. Front Zool 5:12. https://doi.org/10.1186/1742-9994-5-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber L, Gonzalez-Díaz P, Armenteros M, Apprill A (2019) The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol Oceanogr 64(6):2373–2388

    CAS  ADS  Google Scholar 

  • Wegley L, Yu Y, Breitbart M, Casas V, Kline DI, Rohwer F (2004) Coral-associated archaea. Mar Ecol Prog Ser 273:89–96

    CAS  ADS  Google Scholar 

  • Wessels W, Sprungala S, Watson SA, Miller DJ, Bourne DG (2017) The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress. FEMS Microbiol Ecol 93:fix013. https://doi.org/10.1093/femsec/fix013

    Article  CAS  Google Scholar 

  • Wild C, Niggl W, Naumann MS, Haas AF (2010) Organic matter release by Red Sea coral reef organisms—potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71

    CAS  ADS  Google Scholar 

  • Williams GJ, Work TM, Aeby GS, Knapp IS, Davy SK (2011) Gross and microscopic morphology of lesions in Cnidaria from Palmyra Atoll, Central Pacific. J Invert Pathol 106:165–173

    Google Scholar 

  • Yellowlees D, Warner M (2003) Photosynthesis in symbiotic algae. In: Larkum AWD, Douglas SE, Raven JA (eds) Photosynthesis in algae, advances in photosynthesis and respiration. Springer, Dordrecht, pp 437–455

    Google Scholar 

  • Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull 105:629–640

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J Pruett who provided valuable comments that enhanced the quality of this manuscript. We also thank P Houk, A Kerr, L Raymundo, and B Tibbetts for field assistance and logistical support, as well as numerous personnel at the University of Guam Marine Laboratory. We also thank Jose V. Lopez for use of his laboratory space and equipment.

Funding

Provided by the University of Mississippi Office of Research and Sponsored Programs to DJG, and the National Institute of Undersea Science and Technology to MS.

Author information

Authors and Affiliations

Authors

Contributions

MS and DJG designed the study; MS and DJG collected the field samples; CE conducted the laboratory analyses; MS, DJG, and CE conducted the statistical analyses, wrote the manuscript, and contributed to revisions.

Corresponding author

Correspondence to Cole G. Easson.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval

This research was conducted in accordance with the University of Mississippi Institutional Animal Care and Use Committee (IACUC) standards. The Guam Department of Agriculture provided permits for the collection of soft coral samples, and to perform research in the Piti Bomb Holes Marine Protected Area.

Consents

Not applicable.

Additional information

Responsible Editor: C. Voolstra.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Easson, C.G., Gochfeld, D.J. & Slattery, M. Microbiome changes in Sinularia spp. soft corals relative to health status. Mar Biol 171, 53 (2024). https://doi.org/10.1007/s00227-023-04362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-023-04362-6

Keywords

Navigation