Skip to main content

Advertisement

Log in

Variation in the trophic niche and food provisioning between the early and late chick-rearing stages in Magellanic penguins Spheniscus magellanicus at Martillo Island, Tierra del Fuego, Argentina

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Variation in the foraging niche and parental provisioning behaviors of breeding seabirds have the potential to affect population dynamics (e.g. foraging success, breeding productivity, and ultimately population size). We sampled blood plasma of family’ groups (females, males, and chicks) of Magellanic penguins (Spheniscus magellanicus) from Martillo Island, Argentina. We used stable isotope analyses on plasma samples to examine food provisioning, isotopic niche, trophic position, and diet composition of penguins between the early and late chick-rearing periods. We found clear differences in the isotopic niches of penguins between the two stages of the chick-rearing period related to shifts in foraging habitat and/or diet composition between stages. We found no evidence of individual consistency in isotopic niches or sex-specific selective provisioning by adults. In addition, we found high variability within family groups (accounting for 90% of the total isotopic variability). This study improves our understanding of the age, sex, individual, and breeding stage-specific trophic niches of Magellanic penguins, which may be helpful in projecting how they may respond to future environmental change (e.g., changes that affect prey availability).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Penguins’ stable isotope raw data could find available here: https://ri.conicet.gov.ar/handle/11336/197811

References

  • Almandoz G, Cefarelli A, Diodato S, Montoya N, Benavides HR, Carignan M, Hernando M, Fabro E, Metfies K, Lundholm N, Schloss I, Álvarez M, Ferrario M (2019) Harmful phytoplankton in the Beagle Channel (South America) as a potential threat to aquaculture activities. Mar Pollut Bull 145:105–117. https://doi.org/10.1016/j.marpolbul.2019.05.026

    Article  CAS  PubMed  Google Scholar 

  • Araújo MS, Guimarães PR, Svanbäck R, Pinheiro A, Guimarães P, dos Reis SF, Bolnick DI (2008) Network analysis reveals contrasting effects of intraspecific competition on individual vs. population diets. Ecology 89:1981–1993. https://doi.org/10.1890/07-0630.1

    Article  PubMed  Google Scholar 

  • Ballard G, Dugger KM, Nur N, Ainley DG (2010) Foraging strategies of Adélie penguins: adjusting body condition to cope with environmental variability. Mar Ecol Prog Ser 405:287–302

    Article  Google Scholar 

  • Barlow K, Croxall J (2002) Provisioning behaviour of Macaroni Penguins Eudyptes chrysolophus. Ibis 144:248–258

    Article  Google Scholar 

  • Barquete V, Strauss V, Ryan PG (2013) Stable isotope turnover in blood and claws: a case study in captive African Penguins. J Exp Mar Biol Ecol 448:121–127. https://doi.org/10.1016/j.jembe.2013.06.021

    Article  CAS  Google Scholar 

  • Blanco D, Yorio P, Boersma P (1996) Feeding behavior, size asymmetry, and food distribution in magellanic penguin (Spheniscus magellanicus) chicks. Auk 113:496–498. https://doi.org/10.2307/4088917

    Article  Google Scholar 

  • Boersma PD, Frere E, Kane O, Pozzi L, Pütz K, Raya Rey A, Rebstock G, Simeone A, Smith J, Van Buren A, Yorio P, Garcia Borboroglu P (2013) Magellanic Penguin (Spheniscus magellanicus). In: Borboroglu PG, Boersma PD (eds) Penguin biology. University of Washington Press, Seattle, pp 232–263

    Google Scholar 

  • Boersma PD, Rebstock GA, Garcia Borboroglu JP (2015) Marine protection is needed for Magellanic penguins in Argentina based on long-term data. Biol Conserv 182:197–204

    Article  Google Scholar 

  • Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28

    Article  PubMed  Google Scholar 

  • Booth JM, McQuaid CD (2013) Northern rockhopper penguins prioritise future reproduction over chick provisioning. Mar Ecol Prog Ser 486:289–304. https://doi.org/10.3354/meps10371

    Article  Google Scholar 

  • Ceia FR, Ramos JA (2015) Individual specialization in the foraging and feeding strategies of seabirds: a review. Mar Biol 162:1923–1938. https://doi.org/10.1007/s00227-015-2735-4

    Article  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287. https://doi.org/10.3354/meps329281

    Article  CAS  Google Scholar 

  • Cherel Y, Connan M, Jaeger A, Richard P (2014) Seabird year-round and historical feeding ecology: blood and feather δ13C and δ15N values document foraging plasticity of small sympatric petrels. Mar Ecol Prog Ser 505:267–280. https://doi.org/10.3354/meps10795

    Article  Google Scholar 

  • Ciancio JE, Pascual MA, Beauchamp DA (2007) Energy density of Patagonian aquatic organisms and empirical predictions based on water content. Trans Am Fish Soc 136:1415–1422. https://doi.org/10.1577/t06-173.1

    Article  Google Scholar 

  • Ciancio J, Yorio P, Wilson R, Frere E (2018) Food provisioning in Magellanic penguins as inferred from stable isotope ratios. Rapid Commun Mass Spectrom 32:489–494. https://doi.org/10.1002/rcm.8065

    Article  CAS  PubMed  Google Scholar 

  • Clarke J, Manly B, Kerry K, Gardner H, Franchi E, Corsolini S, Focardi S (1998) Sex differences in Adelie penguin foraging strategies. Polar Biol 20:248–258

    Article  Google Scholar 

  • Clausen AP, Pütz K (2002) Recent trends in diet composition and productivity of Gentoo, Magellanic and Rockhopper penguins in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:51–61. https://doi.org/10.1002/aqc.476

    Article  Google Scholar 

  • Croxall JP, Davis LS (1999) Penguins: paradoxes and patterns. Mar Ecol Prog Ser 27:1–12

    Google Scholar 

  • Dehnhard N, Eens M, Sturaro N, Lepoint G, Demongin L, Quillfeldt P, Poisbleau M (2016) Is individual consistency in body mass and reproductive decisions linked to individual specialization in foraging behavior in a long-lived seabird? Ecol Evol 6:4488–4501. https://doi.org/10.1002/ece3.2213

    Article  PubMed  PubMed Central  Google Scholar 

  • Diez M, Cabreira A, Madirolas A, Lovrich G (2016) Hydroacoustical evidence of the expansion of pelagic swarms of Munida gregaria (Decapoda, Munididae) in the Beagle Channel and the Argentine Patagonian Shelf, and its relationship with habitat features. J Sea Res 114:1–12. https://doi.org/10.1016/j.seares.2016.04.004

    Article  Google Scholar 

  • Diez M, Cabreira A, Madirolas A, De Nascimento J, Scioscia G, Schiavini A, Lovrich G (2018) Winter is cool: spatio-temporal patterns of the squat lobster Munida gregaria and the Fuegian sprat Sprattus fuegensis in a sub-Antarctic estuarine environment. Polar Biol 41:2591–2605. https://doi.org/10.1007/s00300-018-2394-2

    Article  Google Scholar 

  • Dodino S, Riccialdelli L, Polito M, Pütz K, Raya Rey A (2020) Inter-annual variation in the trophic niche of Magellanic penguins Spheniscus magellanicus during the pre-molt period in the Beagle Channel. Mar Ecol Prog Ser 655:215–225. https://doi.org/10.3354/meps13518

    Article  CAS  Google Scholar 

  • Dodino S, Riccialdelli L, Polito M, Pütz K, Raya Rey A (2022) Intraspecific trophic variation during the early chick-rearing period in Magellanic penguins Spheniscus magellanicus: influence of age and colony location. Mar Biol 2:169–116

    Google Scholar 

  • Forero MG, Hobson KA, Bortolotti GR, Donázar JA, Bertellotti M, Blanco G (2002) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar Ecol Prog Ser 234:289–299. https://doi.org/10.3354/meps234289

    Article  Google Scholar 

  • France R (1995) Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol Oceanogr 40:1310–1313. https://doi.org/10.4319/lo.1995.40.7.1310

    Article  Google Scholar 

  • Francey RJ, Allisoni CE, Etheridgei DM, Trudingeri CM (1999) A 1000-year high precision record of δ13C in atmospheric CO. Tellus 51:170–193

    Article  Google Scholar 

  • Gandini PA, Frere E, Holik TM (1992) Implicancias de las diferencias en el tamaño corporal entre colonias para el uso de medidas morfométricas como método de sexado en Spheniscus magellanicus. El Hornero 13:211–213

    Article  Google Scholar 

  • Gelman A, Rubin D (1992) Inference from iterative simulation using multiple sequences. Stat Sci 7:457–472

    Article  Google Scholar 

  • Glibert P, Icarus Allen J, Artioli Y, Beusen A, Bouwman L, Harle J, Holmes R, Holt J (2014) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Change Biol 20:3845–3858. https://doi.org/10.1111/gcb.12662

    Article  Google Scholar 

  • Gorman K, Ruck K, Williams T, Fraser W (2021) Advancing the sea ice hypothesis: trophic interactions among breeding Pygoscelis penguins with divergent population trends throughout the western Antarctic Peninsula. Front Mar Sci 8:526092. https://doi.org/10.3389/fmars.2021.526092

    Article  Google Scholar 

  • Graham BS, Koch PL, Newsome SD, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. Isoscapes: understanding movement, pattern, and process on Earth through isotope mapping. Springer, Netherlands, pp 299–318

    Chapter  Google Scholar 

  • Grémillet D, Welcker J, Karnovsky NJ, Walkusz W, Hall ME, Fort J, Brown ZW, Speakman JR, Harding AMA (2012) Little auks buffer the impact of current Arctic climate change. Mar Ecol Prog Ser 454:197–206. https://doi.org/10.3354/meps09590

    Article  Google Scholar 

  • Harris S, Scioscia G, Pütz K, Mattern T, Raya Rey A (2020) Niche partitioning between coexisting gentoo Pygoscelis papua and Magellanic penguins Spheniscus magellanicus at Martillo Island Argentina. Mar Biol. https://doi.org/10.1007/s00227-020-03722-w

    Article  Google Scholar 

  • Herman R, Valls F, Hart T, Petry M, Trivelpiece W, Polito M (2017) Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar Biol 164:115. https://doi.org/10.1007/s00227-017-3142-9

    Article  CAS  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: Turnover of 13C in tissues. The Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Gloutney ML, Gibbs HL (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:720–1723

    Article  Google Scholar 

  • Horswill C, Trathan PN, Ratcliffe N (2017) Linking extreme interannual changes in prey availability to foraging behaviour and breeding investment in a marine predator, the macaroni penguin. PLoS ONE. https://doi.org/10.1371/journal.pone.0184114

    Article  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363

    Article  PubMed  Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis 150:447–461

    Article  Google Scholar 

  • Jackson A, Inger R, Parnell A, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

    Article  PubMed  Google Scholar 

  • Jenkins E, Gulka J, Yurkowski DJ, Davoren GK, Gonzalez L (2019) Diet–tissue discrimination factors (δ15N and δ13C values) for blood components in Magellanic (Spheniscus magellanicus) and southern rockhopper (Eudyptes chrysocome) penguins. Rapid Commun Mass Spectrom. https://doi.org/10.1002/rcm.8612

    Article  Google Scholar 

  • Kowalczyk N, Chiaradia A, Preston T, Reina R (2014) Linking dietary shifts and reproductive failure in seabirds: a stable isotope approach. Funct Ecol 28:755–765. https://doi.org/10.1111/1365-2435.12216

    Article  Google Scholar 

  • Layman CA, Araujo MS, Boucek R, Hammerschlag-Peyer CM, Harrison E, Jud ZR, Matich P, Rosenblatt AE, Vaudo JJ, Yeager LA, Post DM, Bearhop S (2012) Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biol Rev 87:545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x

    Article  PubMed  Google Scholar 

  • Le Vaillant M, Le Bohec C, Onésime P, Wienecke B, Le Maho Y, Kato A, Ropert-Coudert Y (2013) How age and sex drive the foraging behaviour in the King penguin. Mar Biol 160:1147–1156. https://doi.org/10.1007/s00227-013-2167-y

    Article  Google Scholar 

  • Lynch HJ, Naveen R, Trathan PN, Fagan WF (2012) Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93:1367–1377

    Article  PubMed  Google Scholar 

  • Newsome S, Martinez del Rio C, Bearhop S, Phillips D (2007) A niche for stable isotope ecology. Front Ecol Environ 5:429–436. https://doi.org/10.1890/060150.01

    Article  Google Scholar 

  • Noren SR, Williams TM, Pabst DA, McLellan WA, Dearolf JL (2001) The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol Biochem 171:127–134. https://doi.org/10.1007/s003600000161

    Article  CAS  Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Colombus

    Google Scholar 

  • Patrick SC, Weimerskirch H (2017) Reproductive success is driven by local site fidelity despite stronger specialisation by individuals for large-scale habitat preference. J Anim Ecol 86:674–682. https://doi.org/10.1111/1365-2656.12636

    Article  PubMed  Google Scholar 

  • Phillips DL (2001) Mixing models in analyses of diet using multiple stable isotopes: a critique. Oecologia 127:166–170. https://doi.org/10.1007/s004420000571

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates DM, Saikat D, Sarkar D, Team RC (2015) Linear and Nonlinear Mixed Effects Models: 3.2.5. R package version 3.1–131

  • Piper WH (2011) Making habitat selection more “familiar”: a review. Behav Ecol Sociobiol 65:1329–1351

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. https://doi.org/10.1007/s00442-006-0630-x

    Article  PubMed  Google Scholar 

  • Presta M, Riccialdelli L, Bruno D, Castro L, Fioramonti N, Florentín O, Berghoff C, Capitanio F, Lovrich G (2023) Mesozooplankton community structure and trophic relationships in an austral high-latitude ecosystem (Beagle Channel): the role of bottom-up and top-down forces during springtime. J Mar Syst. https://doi.org/10.1016/j.jmarsys.2023.103881

    Article  Google Scholar 

  • Pyke GH, Pulliam HR, Charnov EL (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154

    Article  Google Scholar 

  • Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C (2018) tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol 9:1592–1599. https://doi.org/10.1111/2041-210X.13009

    Article  Google Scholar 

  • R Core Team (2021) R: A language and evironment for statistical computing, version 4.1.0.

  • Raya Rey A, Bost C, Schiavini A, Pütz K (2010) Foraging movements of Magellanic penguins Spheniscus magellanicus in the Beagle Channel, Argentina, related to tide and tidal currents. J Ornithol 151:933–943. https://doi.org/10.1007/s10336-010-0531-y

    Article  Google Scholar 

  • Raya Rey A, Pütz K, Scioscia G, Lüthi B (2012a) Sexual differences in the foraging behaviour of Magellanic Penguins related to stage of breeding. Emu 112:90–96

    Article  Google Scholar 

  • Raya Rey A, Polito M, Archuby D, Coria N (2012b) Stable isotopes identify age- and sex-specific dietary partitioning and foraging habitat segregation in southern giant petrels breeding in Antarctica and southern Patagonia. Mar Biol 2:1317–1326

    Article  Google Scholar 

  • Riccialdelli L, Becker Y, Fioramonti N, Torres M, Bruno D, Raya Rey A, Fernández D (2020) Trophic structure of southern marine ecosystems: a comparative isotopic analysis from the Beagle Channel to the oceanic Burdwood Bank area under a wasp-waist assumption. Mar Ecol Prog Ser 655:1–27

    Article  Google Scholar 

  • Rosciano N, Polito M, Raya Rey A (2019) What’s for dinner mom? Selective provisioning in southern rockhopper penguins (Eudyptes chrysocome). Polar Biol 42:1529–1535. https://doi.org/10.1007/s00300-019-02538-9

    Article  Google Scholar 

  • Rosciano N, Polito M, Raya Rey A (2020) Seasonally persistent foraging niche segregation between sympatric Southern Rockhopper and Magellanic penguins breeding at Isla de los Estados, Argentina. J Ornithol 161:1093–1104. https://doi.org/10.1007/s10336-020-01800-w

    Article  Google Scholar 

  • Rosenfeld S, Ojeda J, Hüne M, Mansilla A, Contador T (2014) Egg masses of the Patagonian squid Doryteuthis (Amerigo) gahi attached to giant kelp (Macrocystis pyrifera) in the sub-Antarctic ecoregion. Polar Res. https://doi.org/10.3402/polar.v33.21636

    Article  Google Scholar 

  • Sanz-Aguilar A, Massa B, Lo Valvo F, Oro D, Minguez E, Tavecchia G (2009) Contrasting age-specific recruitment and survival at different spatial scales: a case study with the European storm petrel. Ecography 32:637–646. https://doi.org/10.1111/j.1600-0587.2009.05596.x

    Article  Google Scholar 

  • Sargeant B, Wirsing A, Heithaus M, Mann J (2007) Can environmental heterogeneity explain individual foraging variation in wild bottlenose dolphins (Tursiops sp.)? Behav Ecol Sociobiol 61:679–688

    Article  Google Scholar 

  • Schiavini A, Yorio P, Gandini PA, Raya Rey A, Boersma PD (2005) Los pingüinos de las costas argentinas: estado poblacional y conservación. El Hornero 20:5–23

    Article  Google Scholar 

  • Schmidt KA (2001) Site fidelity in habitats with contrasting levels of nest predation and brood parasitism. Evol Ecol Res 2:633–648

    Google Scholar 

  • Scioscia G, Rey A, Favero M, Schiavini A (2010) Factores que afectan el éxito reproductivo y la calidad de la nidada del pingüino patagónico (Spheniscus magellanicus) en el Canal Beagle, Tierra del Fuego, Argentina. El Hornero 25:17–25

    Article  Google Scholar 

  • Scioscia G, Raya Rey A, Saenz Samaniego RA, Florentín O, Schiavini A (2014) Intra- and interannual variation in the diet of the Magellanic penguin (Spheniscus magellanicus) at Martillo Island, Beagle Channel. Polar Biol 37:1421–1433. https://doi.org/10.1007/s00300-014-1532-8

    Article  Google Scholar 

  • Scolaro JA, Wilson RP, Laurenti S, Kierspel M, Gallelli H, Upton JA (1999) Feeding preferences of the Magellanic Penguin over its breeding range in Argentina. Waterbirds 22:104–110. https://doi.org/10.2307/1521999

    Article  Google Scholar 

  • Spencer WD (2012) Home ranges and the value of spatial information. J Mammal 93:929–947. https://doi.org/10.1644/12-MAMM-S-061.1

    Article  Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton

    Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ. https://doi.org/10.7717/peerj.5096

    Article  PubMed  PubMed Central  Google Scholar 

  • Switzer PV (1993) Site fidelity in predictable and unpredictable habitats. Evol Ecol 7:533–555. https://doi.org/10.1007/BF01237820

    Article  Google Scholar 

  • Thompson KR (1993) Variation in magellanic penguin Spheniscus magellanicus diet in the Falkland Islands. Mar Ornithol 21:57–67

    Google Scholar 

  • Van Heezik Y, Davis L (1990) Effects of food variability on growth rates, fledging sizes and reproductive success in the Yellow-eyed Penguin Megadyptes antipodes. Ibis 132:354–365

    Article  Google Scholar 

  • Votier S, Bearhop S, Fyfe R, Furness R (2008) Temporal and spatial variation in the diet of a marine top predator—links with commercial fisheries. Mar Ecol Prog Ser 367:223–232. https://doi.org/10.3354/meps07621

    Article  Google Scholar 

  • Wakefield E, Cleasby I, Bearhop S, Bodey T, Davies R, Miller P, Newton J, Votier S, Hamer K (2015) Long-term individual foraging site fidelity-why some gannets don’t change their spots. Ecology 96:3058–3074

    Article  PubMed  Google Scholar 

  • Waluda CM, Hill SL, Peat HJ, Trathan PN (2012) Diet variability and reproductive performance of macaroni penguins Eudyptes chrysolophus at Bird Island, South Georgia. Mar Ecol Prog Ser 466:261–274

    Article  Google Scholar 

  • Watanuki Y (1992) Individual diet difference, parental care and reproductive success in slaty-backed gulls. Condor 94:159–171. https://doi.org/10.2307/1368805

    Article  Google Scholar 

  • Watson JEM, Dudley N, Segan DB, Hockings M (2014) The performance and potential of protected areas. Nature 515:67–73. https://doi.org/10.1038/nature13947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Maria Eugenia Lopez, Analía San Martin and Hernan Sacristan for their help during the fieldwork. Also, we thank Hayat Bennadji, Ulises Balza, and Nicolás A. Lois for technical help with stable isotope analysis. We acknowledge Andres and Alejandro Greco from Piratur SA for transportation to Martillo Island; and the Centro Austral de Investigaciones Científicas (CADIC), Museo Acatushún de Aves y Mamíferos Marinos Australes, and Ea. Harberton, which provided logistical support.

Funding

This study was financially supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-1832, PICT 2014-1870), Wildlife Conservation Society, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Antarctic Research Trust. Research by S.D. was carried out under a Ph.D. fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Contributions

SD: conceptualization, methodology, formal analysis and investigation, writing-original draft preparation; LR: conceptualization, methodology, investigation, resources, writing-review and editing, supervision; MJP: methodology, resources, writing-review and editing; KP: resources, writing-review and editing, funding acquisition; ARR: conceptualization, methodology, investigation, resources, writing-review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Samanta Dodino.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: V. Paiva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 173 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodino, S., Riccialdelli, L., Polito, M.J. et al. Variation in the trophic niche and food provisioning between the early and late chick-rearing stages in Magellanic penguins Spheniscus magellanicus at Martillo Island, Tierra del Fuego, Argentina. Mar Biol 170, 96 (2023). https://doi.org/10.1007/s00227-023-04242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-023-04242-z

Keywords

Navigation