Skip to main content
Log in

Intraspecific trophic variation during the early chick-rearing period in Magellanic penguins Spheniscus magellanicus: influence of age and colony location

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Intraspecific competition for food resources has the potential to be high for central-place foragers such as penguins and can result in spatial and dietary foraging niche segregation among individuals of the same species. We sampled adults, chicks, and juvenile individuals’ whole blood from three colonies of Magellanic penguins (Spheniscus magellanicus) from Tierra del Fuego along an inshore-offshore corridor. We analyzed the isotopic niche, the trophic position and the diet composition in penguins to investigate intraspecific trophic niche variation in relation to biological (age of individuals) and external factors (foraging habitats, colony location) using carbon (δ13C) and nitrogen (δ15N) stable isotope values. We found isotopic niche segregation between age classes within each colony. When comparing across colonies, only juvenile exhibited some degree of isotopic niche overlap among colonies. In addition, at all three colonies juveniles had the largest isotopic niches with relatively higher variation in δ13C values. All individuals consumed low trophic position (TP) prey items such as the pelagic form of Munida gregaria based on stable isotope mixing model results. Adults and juveniles incorporated high TP (silverside and nototheniids) prey items into their diets, except for juveniles from Martillo Island whose proportions mirror chicks’ values. These results denote that parents consumed different prey items for themselves than for their chicks. Intraspecific trophic niche partitioning between colonies showed a decreasing δ13C and δ15N values from the nearest inshore colony relative to the farther offshore colonies. Understanding within and between colonies foraging strategies are important to set up connectivity between populations, status of the different colonies, and to develop adequate conservation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  • Antezana T (1999) Hydrographic feature of Magellan and Fuegian inland passages and adjacent subantarctic waters. In: Arntz WE, Ríos C (eds) Magellan-Antarctic: ecosystems that drifted apart. Scientia Marina, pp 23–34

  • Balestrini C, Manzella G, Lovrich GA (1998) Simulación de Corrientes en el Canal Beagle y Bahía Ushuaia, mediante un modelo bidimensional

  • Balza U, Lois NA, Polito MJ, Pütz K, Salom A, Raya Rey A (2020) The dynamic trophic niche of an island bird of prey. Ecol Evol 00:1–13

    Google Scholar 

  • Balza U, Liljesthröm M, Pimper L, Franco-Navarro I, Cañas-Barrovecchio S, Zunino F, Domato I, Acardi S, Iturraspe R, Cano J, Raya-Rey A (2022) Status of breeding birds at Observatorio and Goffré Islands, Argentina. Polar Biol

  • Barlow KE, Croxall JP (2002) Provisioning behaviour of Macaroni Penguins Eudyptes chrysolophus. Ibis (london 1859) 144:248–258

    Google Scholar 

  • Barquete V, Strauss V, Ryan PG (2013) Stable isotope turnover in blood and claws: a case study in captive African Penguins. J Exp Mar Bio Ecol 448:121–127

    Article  CAS  Google Scholar 

  • Bearhop S, Teece MA, Waldron S, Furness RW (2000) The influence of lipid and uric acid upon d13C and d15N values in avian blood: implications for trophic studies. Auk 117:504–507

    Google Scholar 

  • Bearhop S, Adams CE, Waldron S, Fuller RA, Macleod H (2004) Determining trophic niche width: a novel approach using stable isotope analysis. J Anim Ecol 73:1007–1012

    Article  Google Scholar 

  • Boersma P, Rebstock G, Frere E, Moore S (2009) Following the fish: penguins and productivity in the South Atlantic. Ecol Monogr 79:59–76

    Article  Google Scholar 

  • Boersma PD, Stokes DL, Yorio PM (1990) Reproductive variability and historical change of Magellanic penguins (Spheniscus magellanicus) at Punta Tombo, Argentina. In: Davis L, Darby J (eds) Penguin biology. Academic Press, San Diego, pp 15–43

  • Boersma PD, Frere E, Kane O, Pozzi L, Pütz K, Raya Rey A, Rebstock G, Simeone A, Smith J, Van Buren A, Yorio P, Garcia Borboroglu P (2013) Magellanic penguin (Spheniscus magellanicus). In: Borboroglu PG, Boersma PD (eds) Penguin biology. University of Washington Press, Seattle, pp 232–263

  • Bolton M, Conolly G, Carroll M, Wakefield ED, Caldow R (2019) A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis (lond. 1859) 161:241–259

    Article  Google Scholar 

  • Bugoni L, McGill RAR, Furness RW (2008) Effects of preservation methods on stable isotope signatures in bird tissues. Rapid Commun Mass Spectrom 22:2457–2462

    Article  CAS  PubMed  Google Scholar 

  • Cabana G, Rasmussen J (1996) Comparison of aquatic food chains using nitrogen isotopes. Proc Natl Acad Sci U S A 93:10844–10847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardona Garzón JE, Martínez AM, Barrera F, Pfaff F, Koch BP, Freije RH, Gómez EA, Lara RJ (2016) The Pacific-Atlantic connection: biogeochemical signals in the southern end of the Argentine shelf. J Mar Syst 163:95–101

    Article  Google Scholar 

  • Castillo J, Yorio P, Gatto A (2019) Shared dietary niche between sexes in Magellanic penguins. Austral Ecol 44:635–647

    Article  Google Scholar 

  • Cherel Y (2008) Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarctica Mar Biol 154:813–821

    Article  Google Scholar 

  • Cherel Y, Hobson KA (2007) Geographical variation in carbon stable isotope signatures of marine predators: a tool to investigate their foraging areas in the Southern Ocean. Mar Ecol Prog Ser 329:281–287

    Article  CAS  Google Scholar 

  • Cherel Y, Hobson KA, Hassani S (2005) Isotopic discrimination between food and blood and feathers of captive penguins: implications for dietary studies in the wild. Physiol Biochem Zool 78:106–115

    Article  PubMed  Google Scholar 

  • Ciancio JE, Pascual MA, Beauchamp DA (2007) Energy density of patagonian aquatic organisms and empirical predictions based on water content. Trans Am Fish Soc 136:1415–1422

    Article  Google Scholar 

  • Ciancio JE, Righi C, Faiella A, Frere E (2016) Blood-specific isotopic discrimination factors in the Magellanic penguin (Spheniscus magellanicus). Rapid Commun Mass Spectrom 30:1865–1869

    Article  CAS  PubMed  Google Scholar 

  • Clausen AP, Pütz K (2002) Recent trends in diet composition and productivity of gentoo, magellanic and rockhopper penguins in the Falkland Islands. Aquat Conserv Mar Freshw Ecosyst 12:51–61

    Article  Google Scholar 

  • Costa DP (1991) Reproductive and foraging energetics of high latitude penguins, albatrosses and pinnipeds: implications for life history patterns. Am Zool 31:111–130

    Article  Google Scholar 

  • Dimitrijević D, Paiva VH, Ramos JA, Seco J, Ceia FR, Chipev N, Valente T, Barbosa A, Xavier JC (2018) Isotopic niches of sympatric Gentoo and Chinstrap penguins: evidence of competition for Antarctic krill? Polar Biol 41:1655–1669

    Article  Google Scholar 

  • Dodino S, Riccialdelli L, Polito M, Pütz K, Raya Rey A (2020) Inter-annual variation in the trophic niche of Magellanic penguins Spheniscus magellanicus during the pre-molt period in the Beagle channel. Mar Ecol Prog Ser 655:215–225

    Article  CAS  Google Scholar 

  • Dodino S, Lois NA, Riccialdelli L, Polito MJ, Putz K, Rey AR (2021) Sex-specific spatial use of the winter foraging areas by Magellanic penguins and assessment of potential conflicts with fisheries during winter dispersal. PLoS ONE 16:1–19

    Article  Google Scholar 

  • Dodino S, Riccialdelli L, Polito M, Pütz K, Brasso R, Raya Rey A (2022) Mercury exposure driven by geographic and trophic factors in Magellanic penguins from Tierra del Fuego. Mar Pollut Bull 174:113184

    Article  CAS  PubMed  Google Scholar 

  • Forero MG, Hobson KA, Bortolotti GR, Donázar JA, Bertellotti M, Blanco G (2002a) Food resource utilisation by the Magellanic penguin evaluated through stable-isotope analysis: segregation by sex and age and influence on offspring quality. Mar Ecol Prog Ser 234:289–299

    Article  Google Scholar 

  • Forero MG, Tella JL, Hobson KA, Bertellotti M, Blanco G (2002b) Conspecific food competition explains variability in colony size: a test in Magellanic penguins. Ecology 83:3466–3475

    Article  Google Scholar 

  • Francey RJ, Allisoni CE, Etheridgei DM, Trudingeri CM (1999) A 1000-year high precision record of d13C in atmospheric CO. Tellus 51:170–193

    Article  Google Scholar 

  • Frere E, Gandini P, Lichtschein V (1996) Variación latitudinal en la dieta del pingüino de Magallanes (Spheniscus magellanicus) en la costa patagónica. Argentina Ornitol Neotrop 7:35–41

    Google Scholar 

  • Gandini PA, Frere E, Holik TM (1992) Implicancias de las diferencias en el tamaño corporal entre colonias para el uso de medidas morfométricas como método de sexado en Spheniscus magellanicus. El Hornero 13:211–213

    Google Scholar 

  • Giesecke R, Martín J, Piñones A, Höfer J, Garcés-Vargas J, Flores-Melo X, Alarcón E, Durrieu de Madron X, Bourrin F, González HE (2021) General hydrography of the beagle channel, a subantarctic interoceanic passage at the southern tip of South America. Front Mar Sci 8:621822

    Article  Google Scholar 

  • Gownaris NJ, Boersma PD (2021) Feet first: adaptive growth in Magellanic penguin chicks. Ecol Evol 11:4339–4352

    Article  PubMed  PubMed Central  Google Scholar 

  • Grémillet D, Dell’Omo G, Ryan PG, Peters G, Ropert-Coudert Y, Weeks SJ (2004) Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar Ecol Prog Ser 268:265–279

    Article  Google Scholar 

  • Guihou K, Piola AR, Palma ED, Chidichimo MP (2020) Dynamical connections between large marine ecosystems of Austral South America based on numerical simulations. Ocean Sci 16:271–290

    Article  Google Scholar 

  • Halley DJ, Minagawa M, Nieminen M, Gaare E (2008) Preservation in 70% ethanol solution does not affect δ13C and δ15N values of reindeer blood samples-relevance for stable isotope studies of diet. Rangifer 28:9–12

    Article  Google Scholar 

  • Harris S, Scioscia G, Pütz K, Mattern T, Raya Rey A (2020) Niche partitioning between coexisting gentoo Pygoscelis papua and Magellanic penguins Spheniscus magellanicus at Martillo Island, Argentina. Mar Biol 167:1–10

    Google Scholar 

  • Hennicke JC, Culik BM (2005) Foraging performance and reproductive success of Humboldt penguins in relation to prey availability. Mar Ecol Prog Ser 296:173–181

    Article  Google Scholar 

  • Hobson KA (1993) Trophic relationships among high Arctic seabirds: insights from tissue-dependent stable-isotope models. Mar Ecol Prog Ser 95:7–18

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992) Assessing avian diets using stable isotopes I: turnover of d13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Gloutney ML, Gibbs HL (1997) Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool 75:720–1723

    Article  Google Scholar 

  • Hodum PJ, Hobson KA (2000) Trophic relationships among Antarctic fulmarine petrels: Insights into dietary overlap and chick provisioning strategies inferred from stable-isotope (d15N and d13C) analyses. Mar Ecol Prog Ser 198:273–281

    Article  Google Scholar 

  • Indermühle A, Stocker TF, Joos F, Fischer H, Smith HJ, Wahlen M, Deck B, Mastroianni D, Tschumi J, Blunier T, Meyer R, Stauffer B (1999) Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398:121–126

    Article  Google Scholar 

  • Inger R, Bearhop S (2008) Applications of stable isotope analyses to avian ecology. Ibis (london 1859) 150:447–461

    Google Scholar 

  • Isla F, Bujalesky G, Coronato A (1999) Procesos estuarinos en el Canal Beagle, Tierra del Fuego. Rev La Asoc Geol Argentina 54:307–318

    Google Scholar 

  • Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER—stable isotope Bayesian ellipses in R. J Anim Ecol 80:595–602

    Article  PubMed  Google Scholar 

  • Matano RP, Palma ED, Combes V (2019) The Burdwood Bank circulation. J Geophys Res Ocean 124:6904–6926

    Article  Google Scholar 

  • Moreno J, Sanz JJ (1996) Field metabolic rates of breeding Chinstrap penguins (Pygoscelis antarctica) in the South Shetlands. Physiol Zool 69:586–598

    Article  Google Scholar 

  • Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL (2007) A niche for stable isotope ecology. Front Ecol Environ 5:429–436

    Article  Google Scholar 

  • Nur N (1986) Is clutch size variation in the blue tit (Parus caeruleus) adaptive? An experimental study. J Anim Ecol 55:983–999

    Article  Google Scholar 

  • Pedrocchi V, Oro D, González-Solís J (1996) Differences between diet of adult and chick Audouin’s gulls Larus audouinii at the Chafarinas Islands. SW Mediterr Ornis Fenn 73:124–130

    Google Scholar 

  • Pelletier L, Chiaradia A, Kato A, Ropert-Coudert Y (2014) Fine-scale spatial age segregation in the limited foraging area of an inshore seabird species, the little penguin. Oecologia 176:399–408

    Article  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2021) nlme: linear and nonlinear mixed effects models

  • Piola AR, Falabella V (2009) El Mar Patagónico. The Patagonian Sea

  • Polito MJ, Trivelpiece WZ, Reiss CS, Trivelpiece SG, Hinke JT, Patterson WP, Emslie SD (2019) Intraspecific variation in a dominant prey species can bias marine predator dietary estimates derived from stable isotope analysis. Limnol Oceanogr Methods 17:292–303

    Article  CAS  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189

    Article  PubMed  Google Scholar 

  • Pozzi LM, García Borboroglu P, Boersma PD, Pascual MA (2015) Population regulation in magellanic penguins: what determines changes in colony size? PLoS ONE 10:119002

    Article  Google Scholar 

  • Pütz K, Ingham R, Smith J, Croxall J (2001) Population trends, breeding success and diet composition of gentoo Pygoscelis papua, magellanic Spheniscus magellanicus and rockhopper Eudyptes chrysocome penguins in the Falkland Islands. Polar Biol 24:793–807

    Article  Google Scholar 

  • Quezada-Romegialli C, Jackson AL, Hayden B, Kahilainen KK, Lopes C, Harrod C (2018) tRophicPosition, an r package for the Bayesian estimation of trophic position from consumer stable isotope ratios. Methods Ecol Evol 9:1592–1599

    Article  Google Scholar 

  • Raya Rey A, Trathan P, Schiavini A (2007) Inter-annual variation in provisioning behaviour of Rockhopper Penguins Eudyptes chrysocome chrysocome at Staten Island. Ibis (lond. 1859) 149:826–835

    Article  Google Scholar 

  • Raya Rey A, Bost CA, Schiavini A, Pütz K (2010) Foraging movements of Magellanic penguins Spheniscus magellanicus in the Beagle Channel, Argentina, related to tide and tidal currents. J Ornithol 151:933–943

    Article  Google Scholar 

  • Raya Rey A, Pütz K, Scioscia G, Lüthi B (2012) Sexual differences in the foraging behaviour of Magellanic penguins related to stage of breeding. Emu Austral Ornithol 112:90–96

    Article  Google Scholar 

  • Raya Rey A, Rosciano N, Liljesthröm M, Sáenz Samaniego R, Schiavini A (2014) Species-specific population trends detected for penguins, gulls and cormorants over 20 years in sub-Antarctic Fuegian Archipelago. Polar Biol 37:1343–1360

    Article  Google Scholar 

  • Riccialdelli L, Newsome SD, Fogel ML, Goodall RNP (2010) Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean. Mar Ecol Prog Ser 418:235–248

    Article  Google Scholar 

  • Riccialdelli L, Newsome SD, Fogel ML, Fernández DA (2017) Trophic interactions and food web structure of a subantarctic marine food web in the Beagle Channel: Bahía Lapataia. Argentina Polar Biol 40:807–821

    Article  Google Scholar 

  • Riccialdelli L, Becker YA, Fioramonti NE, Torres M, Bruno DO, Raya Rey A, Fernández D (2020) Trophic structure of southern marine ecosystems: a comparative isotopic analysis from the Beagle channel to the oceanic Burdwood Bank area under a wasp-waist assumption. Mar Ecol Prog Ser

  • Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips Sala. Behav Ecol 15:824–830

    Article  Google Scholar 

  • Rosciano NG, Polito MJ, Raya Rey A (2016) Do penguins share? Evidence of foraging niche segregation between but not within two sympatric, central-place foragers. Mar Ecol Prog Ser 548:249–262

    Article  Google Scholar 

  • Rosciano NG, Pütz K, Polito MJ, Raya Rey A (2017) Foraging behaviour of Magellanic Penguins during the early chick-rearing period at Isla de los Estados, Argentina. Ibis (lond. 1859) 160:327–341

    Article  Google Scholar 

  • Rosciano NG, Polito MJ, Raya Rey A (2019) What’s for dinner mom? Selective provisioning in southern rockhopper penguins (Eudyptes chrysocome). Polar Biol 42:1529–1535

    Article  Google Scholar 

  • Rosciano NG, Pütz K, Polito MJ, Raya Rey A (2021) Where’s the best supermarket deal? Female Southern Rockhopper penguins show variable foraging areas during the guard stage at Isla de los Estados. Can J Zool

  • Schiavini A, Yorio P, Gandini PA, Raya Rey A, Boersma PD (2005) Los pingüinos de las costas argentinas: estado poblacional y conservación. El Hornero 20:5–23

    Google Scholar 

  • Schoener T (1986) Resource partitioning. In: Kikkawa J, Anderson D (eds) Community ecology pattern and process. Blackwell, Carlton, pp 91–126

  • Scioscia G, Raya Rey A, Saenz Samaniego RA, Florentín O, Schiavini A (2014) Intra- and interannual variation in the diet of the Magellanic penguin (Spheniscus magellanicus) at Martillo Island. Beagle Channel Polar Biol 37:1421–1433

    Article  Google Scholar 

  • Scolaro JA, Wilson RP, Laurenti S, Kierspel M, Gallelli H, Upton JA (1999) Feeding preferences of the Magellanic penguin over its breeding range in Argentina. Waterbirds 22:104–110

    Article  Google Scholar 

  • Sears J, Hatch SA, O’Brien DM (2009) Disentangling effects of growth and nutritional status on seabird stable isotope ratios. Oecologia 159:41–48

    Article  PubMed  Google Scholar 

  • Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX (2018) Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6:e5096

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi A, Watanuki Y, Sato K, Arai N, Nishikawa J, Naito Y (2003) Parental foraging effort and offspring growth in Adelie Penguins: does working hard improve reproductive success? Funct Ecol 17:590–597

    Article  Google Scholar 

  • Tapella F, Lovrich GA, Romero MC, Thatje S (2002) Reproductive biology of the crab Munida subrugosa(Decapoda: Anomura: Galatheidae) in the Beagle channel, Argentina. J Mar Biol Assoc (United Kingdom) 589–595

  • Tella JL, Forero MG, Bertelloti M, Donázar JA, Blanco G, Ceballos O (2001) Offspring body condition and immuno- competence are negatively affected by high breeding densities in a colonial seabird: a multi-scale approach. Proc R Soc Biol Sci 268:1455–1461

    Article  CAS  Google Scholar 

  • Therrien JF, Fitzgerald G, Gauthier G, Bêty J (2011) Diet-tissue discrimination factors of carbon and nitrogen Stable isotopes in blood of Snowy Owl (Bubo scandiacus). Can J Zool 89:343–347

    Article  CAS  Google Scholar 

  • Thompson KR (1993) Variation in Magellanic penguin Spheniscus magellanicus diet in the Falkland Islands. Mar Ornithol 21:57–67

    Google Scholar 

  • Williams CT, Buck CL, Sears J, Kitaysky AS (2007) Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153:11–18

    Article  PubMed  Google Scholar 

  • Wilson RP, Scolaro JA, Grémillet D, Kierspel MAM, Laurenti S, Upton J, Gallelli H, Quintana F, Frere E, Müller G, Thor Straten M, Zimmer I (2005) How do Magellanic penguins cope with variability in their acces to prey? Ecol Monogr 75:379–401

    Article  Google Scholar 

  • Yorio P, González-Zevallos D, Gatto A, Biagioni O, Castillo J (2017) Relevance of forage fish in the diet of Magellanic penguins breeding in northern Patagonia. Argentina Mar Biol Res 13:603–617

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Ulises Balza and Nicolás A. Lois for technical help with stable isotope analysis and samples collection. We acknowledge Andres and Alejandro Greco from Piratur SA for transportation to Martillo Island; and the Centro Austral de Investigaciones Científicas (CADIC), Museo Acatushún de Aves y Mamíferos Marinos Australes, and Ea. Harberton, which provided logistical support.

Funding

This study was financially supported by the Agencia Nacional de Promoción Científica y Tecnológica (PICT 2012-1832, PICT 2014-1870), Wildlife Conservation Society, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and the Antarctic Research Trust. Research by S.D. was carried out under a PhD fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Contributions

SD: Conceptualization, Methodology, Formal Analysis and Investigation, Writing-Original Draft Preparation; LR: Conceptualization, Methodology, Investigation, Resources, Writing-Review and Editing, Supervision; MJP: Methodology, Resources, Writing-Review and Editing; KP: Resources, Writing-Review and Editing, Funding acquisition; ARR: Conceptualization, Methodology, Investigation, Resources, Writing-Review and Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Samanta Dodino.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: Vitor H. Paiva.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 122 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dodino, S., Riccialdelli, L., Polito, M.J. et al. Intraspecific trophic variation during the early chick-rearing period in Magellanic penguins Spheniscus magellanicus: influence of age and colony location. Mar Biol 169, 116 (2022). https://doi.org/10.1007/s00227-022-04100-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-022-04100-4

Keywords

Navigation