Skip to main content
Log in

Long-term change in a high-intertidal rockweed (Pelvetiopsis californica) and community-level consequences

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Rockweeds can dominate temperate rocky intertidal habitats and support a diversity of flora and fauna that find refuge underneath the canopy-forming seaweed. Pelvetiopsis californica is an upper intertidal rockweed endemic to California (USA) and Baja California (MEX) with little known about its distribution and abundance, nor its ecological role as a habitat former. We examined long-term changes in the abundance and distribution of P. californica and its effects on the upper shore community, along the coast of California. Similar to patterns observed in other rockweeds globally, P. californica has declined over the past several decades, including extirpation at 30% of sites sampled, clustered around urban centers of southern California, and a large decline in abundance at most sites from a long-term (~ 20 + years) monitoring program. Currently, P. californica exhibits a patchy distribution, particularly in southern California where it is absent from long stretches of shoreline. In community surveys across a large geographic scale (32°–36° latitude), high zone community composition was significantly different at sites where P. californica was present, even at relatively low cover, than when the alga was absent. Within-site community surveys also showed that communities associated with P. californica were different than when the rockweed was absent, highlighted by a higher diversity of algae and invertebrates. Probable stressors, such as trampling and climate change, are likely to worsen in the future, further reducing P. californica populations. Due to limited reproductive dispersal capabilities and fragmented populations, natural recovery seems unlikely and active restoration may be necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Multi-Agency Rocky Intertidal Network (MARINe) data are available by request at pacificrockyintertidal.org, historical data can be found in supplementary tables, and community data are available from the corresponding author on request.

References

  • Abbott IA, Hollenberg GJ (1992) Marine algae of California. Stanford University Press, California

    Book  Google Scholar 

  • Aguilar-Rosas R, Aguilar-Rosas LE, Mateo-Cid LE, Mendoza-González AC, Krauss-Cosio H (2002) Hesperophycus and Silvetia members of the Fucaceae family (Fucales, Phaeophyta) in the Pacific coast of Mexico. Hidrobiológica 12:147–156

    Google Scholar 

  • Ambrose RF, Smith JR (2005) Restoring rocky intertidal habitats in Santa Monica Bay. Santa Monica Bay Restoration Commission

  • Ang P, de Wreede R (1993) Simulation and analysis of the dynamics of a Fucus distichus (Phaeophyceae, Fucales) population. Mar Ecol Prog Ser 93:253–265. https://doi.org/10.3354/meps093253

    Article  Google Scholar 

  • Barry JP, Baxter CH, Sagarin RD, Gilman SE (1995) Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267:672–675

    Article  CAS  Google Scholar 

  • Berger R, Henriksson E, Kautsky L, Malm T (2003) Effects of filamentous algae and deposited matter on the survival of Fucus vesiculosus L. germlings in the Baltic Sea. Aquat Ecol 37:1–11

    Article  Google Scholar 

  • Blanchette CA (1997) Size and survival of intertidal plants in response to wave action: a case study with Fucus gardneri. Ecology 78:1563–1578. https://doi.org/10.2307/2266149

    Article  Google Scholar 

  • Blanfuné A, Boudouresque CF, Verlaque M, Thibaut T (2019) The ups and downs of a canopy-forming seaweed over a span of more than one century. Sci Rep 9:5250. https://doi.org/10.1038/s41598-019-41676-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brawley SH, Johnson LE, Pearson GA, Speransky V, Li R, Serrão E (1999) Gamete release at low tide in Fucoid algae: maladaptive or advantageous? Am Zool 39:218–229. https://doi.org/10.1093/icb/39.2.218

    Article  Google Scholar 

  • Bulleri F, Benedetti-Cecchi L, Acunto S, Cinelli F, Hawkins SJ (2002) The influence of canopy algae on vertical patterns of distribution of low-shore assemblages on rocky coasts in the northwest Mediterranean. J Exp Mar Biol Ecol 267:89–106. https://doi.org/10.1016/S0022-0981(01)00361-6

    Article  Google Scholar 

  • Buonomo R, Chefaoui RM, Lacida RB, Engelen AH, Serrão EA, Airoldi L (2018) Predicted extinction of unique genetic diversity in marine forests of Cystoseira spp. Mar Environ Res 138:119–128. https://doi.org/10.1016/j.marenvres.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  • Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K (2008) Climate change scenarios for the California region. Clim Change 87:21–42. https://doi.org/10.1007/s10584-007-9377-6

    Article  Google Scholar 

  • Cecere E, Fanelli G, Petrocelli A, Saracino OD (2001) Changes in seaweed biodiversity of the Gargano Coast (Adriatic Sea, Mediterranean Sea). In: Faranda FM, Guglielmo L, Spezie G (eds) Mediterranean ecosystems: structures and processes. Springer, New York, pp 347–351

    Chapter  Google Scholar 

  • Coleman MA, Kelaher BP, Steinberg PD, Millar AJK (2008) Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. J Phycol 44:897–901. https://doi.org/10.1111/j.1529-8817.2008.00541.x

    Article  PubMed  Google Scholar 

  • D’Archino R, Neill K, Nelson WA, Fachon E, Peat C (2019) New Zealand macroalgae: distribution and potential as national scale ecological indicators. New Zealand Aquatic Environment and Biodiversity Report 207

  • Davidson I, Simkanin C (2008) Skeptical of assisted colonization. Science 322:1048–1049

    Article  CAS  Google Scholar 

  • Dawson EY (1959) A primary report on the benthic marine flora of southern California. California State Water Pollution Control Board

  • Dawson EY (1965) Intertidal algae. An oceanographic and biological survey of the southern California mainland shelf. California State Wat Quality Control Board

  • Denis TG (2002) Effects of human foot traffic on the standing stocks, size structures, and reproduction of southern California populations of the intertidal rockweed Silvetia compressa (O. Fucales). Dissertation, California State University, Fullerton

  • Duarte L, Viejo RM, Martínez B, deCastro M, Gómez-Gesteira M, Gallardo T (2013) Recent and historical range shifts of two canopy-forming seaweeds in North Spain and the link with trends in sea surface temperature. Acta Oecol 51:1–10. https://doi.org/10.1016/j.actao.2013.05.002

    Article  Google Scholar 

  • Elsberry LA, Bracken MES (2021) Functional redundancy buffers mobile invertebrates against the loss of foundation species on rocky shores. Mar Ecol Prog Ser 673:43–54. https://doi.org/10.3354/meps13795

    Article  Google Scholar 

  • Eriksson BK, Johansson G (2003) Sedimentation reduces recruitment success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. Eur J Phycol 38:217–222. https://doi.org/10.1080/0967026031000121688

    Article  Google Scholar 

  • Fagan WF, Unmack PJ, Burgess C, Minckley WL (2002) Rarity, fragmentation, and extinction risk in desert fishes. Ecology 83:3250–3256

    Article  Google Scholar 

  • Fales RJ (2019) Distribution, local extinctions, long-term change, community dynamics and demography of Pelvetiopsis californica (Phaeophyceae, Fucales). Dissertation, California State Polytechnic University, Pomona

  • Fernández C (2016) Current status and multidecadal biogeographical changes in rocky intertidal algal assemblages: the northern Spanish coast. Estuar Coast Shelf Sci 171:35–40. https://doi.org/10.1016/j.ecss.2016.01.026

    Article  Google Scholar 

  • Ferreira J, Arenas F, Martínez B, Hawkins SJ, Stuart RJ (2014) Physiological response of fucoid algae to environmental stress: comparing range centre and southern populations. New Phytol 202:1157–1172

    Article  Google Scholar 

  • Filbee-Dexter K, Smajdor A (2019) Ethics of assisted evolution in marine conservation. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00020

    Article  Google Scholar 

  • Fredriksen S, Filbee-Dexter K, Norderhaug KM, Steen H, Bodvin T, Coleman MA, Moy F, Wernberg T (2020) Green gravel: a novel restoration tool to combat kelp forest decline. Sci Rep 10:3983. https://doi.org/10.1038/s41598-020-60553-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerrard AL (2005) Changes in rocky intertidal floras along the Palos Verdes peninsula (Los Angeles county) since E. Y. Dawson’s surveys in the late 1950s. Dissertation, California State University, Fullerton

  • Goodson J (2003) Long-term changes in rocky intertidal populations and communities at Little Corona del Mar, California: a synthesis using traditional and non-traditional data. Dissertation, California State University, Fullerton

  • Graham S, Hong B, Mutschler S, Saunders B, Bredvik J (2018) Changes in abundance of Silvetia compressa at San Clemente Island before and during the 2015–2016 El Niño. West N Am Nat 78:13

    Article  Google Scholar 

  • Gunnill FC (1980) Demography of the intertidal brown alga Pelvetia fastigiata in southern California, USA. Mar Biol 59:169–179

    Article  Google Scholar 

  • Gunnill FC (1982) Effects of plant size and distribution on the numbers of invertebrate species and individuals inhabiting the brown alga Pelvetia fastigiata. Mar Biol 69:263–280. https://doi.org/10.1007/BF00397492

    Article  Google Scholar 

  • Gunnill FC (1985) Growth, morphology and microherbivore faunas of Pelvetia fastigiata (Phaeophyta, Fucaceae) at La Jolla, California, USA. Bot Mar 28:187–200. https://doi.org/10.1515/botm.1985.28.5.187

  • Gutow L, Petersen I, Bartl K, Huenerlage K (2016) Marine meso-herbivore consumption scales faster with temperature than seaweed primary production. J Exp Mar Biol Ecol 477:80–85. https://doi.org/10.1016/j.jembe.2016.01.009

    Article  Google Scholar 

  • Hamilton DJ (2001) Feeding behavior of common eider ducklings in relation to availability of rockweed habitat and duckling age. Waterbirds Int J Waterbird Biol 24:233. https://doi.org/10.2307/1522035

    Article  Google Scholar 

  • Haring R, Dethier M, Williams S (2002) Desiccation facilitates wave-induced mortality of the intertidal alga Fucus gardneri. Mar Ecol Prog Ser 232:75–82. https://doi.org/10.3354/meps232075

    Article  Google Scholar 

  • Jenkins SR, Hawkins SJ, Norton TA (1999) Direct and indirect effects of a macroalgal canopy and limpet grazing in structuring a sheltered inter-tidal community. Mar Ecol Prog Ser 188:81–92

    Article  Google Scholar 

  • Jenkins S, Coleman R, Santina P, Hawkins S, Burrows M, Hartnoll R (2005) Regional scale differences in the determinism of grazing effects in the rocky intertidal. Mar Ecol Prog Ser 287:77–86. https://doi.org/10.3354/meps287077

    Article  Google Scholar 

  • Jones E, Long JD (2018) Geographic variation in the sensitivity of an herbivore-induced seaweed defense. Ecology 99:1748–1758. https://doi.org/10.1002/ecy.2407

    Article  PubMed  Google Scholar 

  • Josselyn MN, Mathieson AC (1978) Contribution of receptacles from the Fucoid Ascophyllum nodosum to the detrital pool of a north temperate estuary. Estuaries 1:258–261. https://doi.org/10.2307/1351529

    Article  Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Waern M (1986) Decreased depth penetration of Fucus vesiculosus (L.) since the 1940’s indicates eutrophication of the Baltic Sea. Mar Ecol Prog Ser 28:1–8

    Article  Google Scholar 

  • Kay LM, Schmidt AL, Wilson KL, Lotze HK (2016) Interactive effects of increasing temperature and nutrient loading on the habitat-forming rockweed Ascophyllum nodosum. Aquat Bot 133:70–78. https://doi.org/10.1016/j.aquabot.2016.06.002

    Article  Google Scholar 

  • Keser M, Swenarton JT, Foertch JF (2005) Effects of thermal input and climate change on growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in eastern Long Island Sound (USA). J Sea Res 54:211–220. https://doi.org/10.1016/j.seares.2005.05.001

    Article  Google Scholar 

  • Lamela-Silvarrey C, Fernández C, Anadón R, Arrontes J (2012) Fucoid assemblages on the north coast of Spain: past and present (1977–2007). Bot Mar 55:199–207. https://doi.org/10.1515/bot-2011-0081

  • Lilley SA, Schiel DR (2006) Community effects following the deletion of a habitat-forming alga from rocky marine shores. Oecologia 148:672–681. https://doi.org/10.1007/s00442-006-0411-6

    Article  PubMed  Google Scholar 

  • Loss SR, Terwilliger LA, Peterson AC (2011) Assisted colonization: integrating conservation strategies in the face of climate change. Biol Conserv 144:92–100

    Article  Google Scholar 

  • Lotze HK, Milewski I (2004) Two centuries of multiple human impacts and successive changes in a north Atlantic food web. Ecol Appl 14:1428–1447. https://doi.org/10.1890/03-5027

    Article  Google Scholar 

  • Lyon GS, Stein ED (2009) How effective has the Clean Water Act been at reducing pollutant mass emissions to the Southern California Bight over the past 35 years? Environ Monit Assess 154:413–426. https://doi.org/10.1007/s10661-008-0408-1

    Article  CAS  PubMed  Google Scholar 

  • Maki AW (1991) The Exxon Valdez oil spill: initial environmental impact assessment. Part 2. Environ Sci Technol 25:24–29. https://doi.org/10.1021/es00013a001

    Article  CAS  Google Scholar 

  • Melwani AR, Gregorio D, Jin Y, Stephenson M, Ichikawa G, Siegel E, Crane D, Lauenstein G, Davis JA (2014) Mussel watch update: long-term trends in selected contaminants from coastal California, 1977–2010. Mar Pollut Bull 81:291–302. https://doi.org/10.1016/j.marpolbul.2013.04.025

    Article  CAS  PubMed  Google Scholar 

  • Munda IM (1993) Changes and degradation of seaweed stands in the Northern Adriatic. Hydrobiologia 260:239–253

    Article  Google Scholar 

  • Murray SN, Weisberg SB, Raimondi PT, Ambrose RF, Bell CA, Blanchette CA, Burnaford JL, Dethier MN, Engle JM, Foster MS, Miner CM, Nielsen KJ, Pearse JS, Richards DV, Smith JR (2016) Evaluating ecological states of rocky intertidal communities: a Best Professional Judgment exercise. Ecol Indic 60:802–814. https://doi.org/10.1016/j.ecolind.2015.08.017

    Article  Google Scholar 

  • Murray SN, Littler MM, Abbott IA (1980) Biogeography of the California marine algae with emphasis on the southern California islands. In: The California Islands. Santa Barbara, California, pp 325–339

  • Murray SN, Denis TG, Kido JS, Smith JR (1999) Human visitation and the frequency and potential effects of collecting on rocky intertidal populations in southern California marine reserves. In: Reports of California Cooperative Oceanic Fisheries Investigations. pp 100–106

  • Neiva J, Serrão EA, Anderson L, Raimondi PT, Martins N, Gouveia L, Paulino C, Coelho NC, Miller KA, Reed DC, Ladah LB, Pearson GA (2017) Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evol Biol 17:1–12. https://doi.org/10.1186/s12862-017-0878-2

    Article  Google Scholar 

  • Nicastro KR, Zardi GI, Teixeira S, Neiva J, Serrão EA, Pearson GA (2013) Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol 11:1–13. https://doi.org/10.1186/1741-7007-11-6

    Article  Google Scholar 

  • Nilsson J, Engkvist R, Persson L-E (2004) Long-term decline and recent recovery of Fucus populations along the rocky shores of southeast Sweden, Baltic Sea. Aquat Ecol 38:587–598

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) vegan: Community Ecology Package. R package version 2.5-2. https://CRAN.R-project.org/package=vegan

  • Orlando-Bonaca M, Lipej L, Orfanidis S (2008) Benthic macrophytes as a tool for delineating, monitoring and assessing ecological status: the case of Slovenian coastal waters. Mar Pollut Bull 56:666–676. https://doi.org/10.1016/j.marpolbul.2007.12.018

    Article  CAS  PubMed  Google Scholar 

  • Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225

    Article  Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez Oil Spill. Science 302:2082–2086. https://doi.org/10.1126/science.1084282

    Article  CAS  PubMed  Google Scholar 

  • Ragan MA, Ragan CM, Jensen A (1980) Natural chelators in sea water: detoxification of Zn2+ by brown algal polyphenols. J Exp Mar Biol Ecol 44:261–267

    Article  CAS  Google Scholar 

  • Raimondi PT, Ammann K, Gilbane L, Whitaker S, Ostermann-Kelm S (2018) Power analysis of the intertidal monitoring programs at Channel Islands National Park and the Bureau of Ocean Energy Management. Natural Resource Report NPS/MEDN/NRR—2018/1661. National Park Service, Fort Collins, Colorado

  • Rangeley R, Kramer D (1995) Use of rocky intertidal habitats by juvenile pollock Pollachius virens. Mar Ecol Prog Ser 126:9–17. https://doi.org/10.3354/meps126009

    Article  Google Scholar 

  • Rangeley RW, Kramer DL (1998) Density-dependent antipredator tactics and habitat selection in juvenile pollock. Ecology 79:943–952

    Article  Google Scholar 

  • Rothäusler E, Rugiu L, Jormalainen V (2018) Forecast climate change conditions sustain growth and physiology but hamper reproduction in range-margin populations of a foundation rockweed species. Mar Environ Res 141:205–213. https://doi.org/10.1016/j.marenvres.2018.09.014

    Article  CAS  PubMed  Google Scholar 

  • Rugiu L, Manninen I, Rothäusler E, Jormalainen V (2018) Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions. Mar Environ Res 134:76–84. https://doi.org/10.1016/j.marenvres.2017.12.016

    Article  CAS  PubMed  Google Scholar 

  • Sagarin RD, Barry JP, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490. https://doi.org/10.2307/2657226

    Article  Google Scholar 

  • Sales M, Cebrian E, Tomas F, Ballesteros E (2011) Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar Coast Shelf Sci 92:347–357. https://doi.org/10.1016/j.ecss.2011.01.008

    Article  CAS  Google Scholar 

  • Sapper SA, Murray SN (2003) Variation in structure of the subcanopy assemblage associated with southern California populations of the intertidal rockweed Silvetia compressa (Fucales). Pac Sci 57:433–462. https://doi.org/10.1353/psc.2003.0035

    Article  Google Scholar 

  • Schmidt A, Coll M, Romanuk T, Lotze H (2011) Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Mar Ecol Prog Ser 437:51–68. https://doi.org/10.3354/meps09276

    Article  Google Scholar 

  • Schonbeck M, Norton TA (1978) Factors controlling the upper limits of Fucoid algae on the shore. J Exp Mar Biol Ecol 31:303–313

    Article  Google Scholar 

  • Seeley RH, Schlesinger WH (2012) Sustainable seaweed cutting? The rockweed (Ascophyllum nodosum) industry of Maine and the Maritime Provinces: sustainable seaweed cutting? Ann N Y Acad Sci 1249:84–103. https://doi.org/10.1111/j.1749-6632.2012.06443.x

    Article  PubMed  Google Scholar 

  • Silva PC (1990) Hesperophycus Setchell & Gardner, Nom. Cons. Prop., a problematic name applied to a distinctive genus of Fucaceae (Phaeophyceae). Taxon 39:1–8

    Article  Google Scholar 

  • Strain EMA, Thomson RJ, Micheli F, Mancuso FP, Airoldi L (2014) Identifying the interacting roles of stressors in driving the global loss of canopy-forming to mat-forming algae in marine ecosystems. Glob Change Biol 20:3300–3312. https://doi.org/10.1111/gcb.12619

    Article  Google Scholar 

  • Takolander A, Leskinen E, Cabeza M (2017) Synergistic effects of extreme temperature and low salinity on foundational macroalga Fucus vesiculosus in the northern Baltic Sea. J Exp Mar Biol Ecol 495:110–118. https://doi.org/10.1016/j.jembe.2017.07.001

    Article  CAS  Google Scholar 

  • Thibaut T, Blanfune A, Boudouresque C-F, Verlaque M (2014) Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions? Mediterr Mar Sci 16:206–224

    Article  Google Scholar 

  • Thom RM, Widdowson TB (1978) A resurvey of E. Yale Dawson’s 42 intertidal algal transects on the southern California mainland after 15 years. Bull South Calif Acad Sci 77:1–13

    Google Scholar 

  • Thomsen MS, Wernberg T, South PM, Schiel DR (2016) To include or not to include (the invader in community analyses)? That is the question. Biol Invasions 18:1515–1521. https://doi.org/10.1007/s10530-016-1102-9

    Article  Google Scholar 

  • Thomsen MS, Mondardini L, Alestra T, Gerrity S, Tait L, South PM, Lilley SA, Schiel DR (2019) Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front Mar Sci. https://doi.org/10.3389/fmars.2019.00084

    Article  Google Scholar 

  • Torn K, Krause-Jensen D, Martin G (2006) Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquat Bot 84:53–62. https://doi.org/10.1016/j.aquabot.2005.07.011

    Article  Google Scholar 

  • Toth G, Pavia H (2000) Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations. Mar Ecol Prog Ser 192:119–126. https://doi.org/10.3354/meps192119

    Article  CAS  Google Scholar 

  • Tronske NB (2020) Experimental restoration of a canopy-forming foundational rockweed species in the rocky intertidal zone: Effects of Silvetia compressa transplant density on thalli survival and growth and subcanopy recruitment and community composition. Dissertation, California State Polytechnic University, Pomona

  • Ugarte RA, Critchley A, Serdynska AR, Deveau JP (2009) Changes in composition of rockweed (Ascophyllum nodosum) beds due to possible recent increase in sea temperature in Eastern Canada. J Appl Phycol 21:591–598. https://doi.org/10.1007/s10811-008-9397-2

    Article  Google Scholar 

  • Vadas RL Sr, Wright WA, Beal BF (2004) Biomass and productivity of intertidal rockweeds (Ascophyllum nodosum LeJolis) in Cobscook Bay. Northeast Nat 11:123–142. https://doi.org/10.1656/1092-6194(2004)11[123:BAPOIR]2.0.CO;2

    Article  Google Scholar 

  • Van De Werfhorst LC, Pearse JS (2007) Trampling in the rocky intertidal of central California: a follow-up study. Bull Mar Sci 81:245–254

    Google Scholar 

  • Vogt H, Schramm W (1991) Conspicuous decline of Fucus in Kiel Bay (Western Baltic): what are the causes? Mar Ecol Prog Ser 69:189–194. https://doi.org/10.3354/meps069189

    Article  Google Scholar 

  • Wahl M, Molis M, Hobday AJ, Dudgeon S, Neumann R, Steinberg P, Campbell AH, Marzinelli E, Connell S (2015) The responses of brown macroalgae to environmental change from local to global scales: direct versus ecologically mediated effects. Perspect Phycol 2:11–29. https://doi.org/10.1127/pip/2015/0019

    Article  Google Scholar 

  • Ware R (2009) Central Orange County areas of special biological significance public use monitoring program. City of Newport Beach Public Works

  • Watt CA, Scrosati RA (2013) Bioengineer effects on understory species richness, diversity, and composition change along an environmental stress gradient: experimental and mensurative evidence. Estuar Coast Shelf Sci 123:10–18. https://doi.org/10.1016/j.ecss.2013.02.006

    Article  Google Scholar 

  • Whitaker SG, Smith JR, Murray SN (2010) Reestablishment of the southern California rocky intertidal brown alga, Silvetia compressa: an experimental investigation of techniques and abiotic and biotic factors that affect restoration success. Restor Ecol 18:18–26. https://doi.org/10.1111/j.1526-100X.2010.00717.x

    Article  Google Scholar 

  • Widdowson TB (1971) Changes in the intertidal algal flora of the Los Angeles area since the survey by E. Yale Dawson in 1956–1959. Bull South Calif Acad Sci 70:2–16

    Google Scholar 

  • Wilson KL, Kay LM, Schmidt AL, Lotze HK (2015) Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change. Mar Biol 162:2431–2444. https://doi.org/10.1007/s00227-015-2769-7

    Article  CAS  Google Scholar 

  • Wippelhauser G (1996) Ecology and management of Maine’s eelgrass, rockweeds, and kelps. Maine Natural Areas Program, Department of Conservation, Augusta, Maine

  • Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. CRC Press/Taylor & Francis Group, Boca Raton

    Book  Google Scholar 

  • Wright JT, Williams SL, Dethier MN (2004) No zone is always greener: variation in the performance of Fucus gardneri embryos, juveniles and adults across tidal zone and season. Mar Biol 145:1061–1073. https://doi.org/10.1007/s00227-004-1399-2

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful for the support provided by the Bureau of Ocean Energy Management (BOEM) and the associated Multi-Agency Rocky Intertidal Network (MARINe), including presence/absence data from MARINe members associated with the Channel Island National Park Services, University of California, Santa Cruz, University of California, Los Angeles, Golden Gate National Recreation Area, Cabrillo National Monument, and Navy Marine Ecology Consortium Laboratory. In addition, MARINe provided long-term monitoring data collected by numerous partners within the consortium; see pacificrockyintertidal.org for a complete list of the MARINe partners responsible for monitoring and funding. MARINE database management was primarily supported by BOEM, the National Park Services, The David & Lucile Packard Foundation, and the United States Navy. We thank the Orange County Marine Protected Area Council (OCMPAC), California State Parks, UC Natural Reserve System, USC Wrigley Institute, Hopkins Marine Station, and Cabrillo National Monument for allowing access to sites. We also appreciate statistical advice provided by S. Whitaker (Univ. of California, Santa Barbra) and E. Carrington (Univ. of Washington) which improved earlier drafts of this manuscript. We also thank two anonymous reviewers for their helpful comments which greatly improved the manuscript.

Funding

This work was supported by NSF Biological Training in Education and Research program (BioTiER, NSF Grant #1259702); the California State Polytechnic University, Pomona (CPP) Biological Sciences Department Rachel Carson scholarship; the Mentoring, Educating, Networking, and Thematic Opportunities for Research in Engineering and Science program (MENTORES, funded by a Title V grant, Promoting Post-baccalaureate Opportunities for Hispanic Americans U.S. Department of Education Award # P031M140025); and the CPP Biology Research Funds awarded to RJF.

Author information

Authors and Affiliations

Authors

Contributions

RJF and JRS conceived the study, designed the methods, and secured funding. RJF led data collection, analysis, and writing of the manuscript. Both authors contributed to drafts and approved the manuscript.

Corresponding author

Correspondence to Robin J. Fales.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: F. Bulleri.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 215 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fales, R.J., Smith, J.R. Long-term change in a high-intertidal rockweed (Pelvetiopsis californica) and community-level consequences. Mar Biol 169, 34 (2022). https://doi.org/10.1007/s00227-022-04022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-022-04022-1

Keywords

Navigation