Skip to main content

Advertisement

Log in

Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Rising temperatures are changing the distribution and abundance of species worldwide, yet the magnitude of warming varies regionally. Atlantic Canada lies in a zone of significant warming and harbors many cold-adapted seaweeds of ecological and economic importance. Using a factorial laboratory experiment, we tested the effects of increasing water temperature on the survival, growth, and nutrient content of rockweeds (Ascophyllum nodosum, Fucus vesiculosus), Irish moss (Chondrus crispus), kelp (Laminaria digitata), and the invasive Codium fragile ssp. tomentosoides from Nova Scotia (44°29.9′N, 63°31.7′W). In June 2014, species were exposed to typical spring–summer water temperatures (12, 16, 20 °C), a predicted increase in summer temperature (23 °C), and potential heat wave temperatures in shallow waters (26, 29 °C) for 9 weeks. Chondrus crispus and L. digitata experienced highest growth at 12 °C, F. vesiculosus and Codium at 16 °C, and A. nodosum at 20 °C. Survival was lowest in L. digitata with no survival above 20 °C, followed by rockweeds with low survival above 23 °C, while C. crispus and Codium exhibited high survival at all temperatures. There was some evidence for temporary acclimation and short-term survival at higher temperatures. Temperature stress did not affect carbon content but some species showed increased tissue nitrogen, potentially changing nutritional quality and the ability to store and cycle nutrients. These species-specific responses to increasing water temperature will result in shifts in species composition along Atlantic Canada’s rocky shore, altering seaweed canopies, their ecosystem structure and function, and the services they provide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen GS, Pedersen MF, Nielsen SL (2013) Temperature acclimation and heat tolerance of photosynthesis in Norwegian Saccharina latissima (Laminariales, Phaeophyceae). J Phycol 49:689–700

    Article  CAS  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for primer: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Asare SO, Harlin MM (1983) Seasonal fluctuations in tissue nitrogen for five species of perennial macroalgae in Rhode Island Sound. J Phycol 19:254–257

    Article  CAS  Google Scholar 

  • Baumann H, Doherty O (2013) Decadal changes in the world’s coastal latitudinal temperature gradients. PLoS ONE 8:e67596

    Article  CAS  Google Scholar 

  • Bird CJ, Dadswell MJ, Grund DW (1993) First record of the potential nuisance alga Codium fragile ssp. tomentosoides (Chlorophyta, Caulerpales) in Atlantic Canada. Proc NS Inst Sci 40:11–17

    Google Scholar 

  • Bolton JJ, Lüning K (1982) Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Mar Biol 66:84–94

    Article  Google Scholar 

  • Brady-Campbell MM, Campbell DB, Harlin MM (1984) Productivity of kelp (Laminaria spp.) near the southern limit in the Northwestern Atlantic Ocean. Mar Ecol Prog Ser 18:79–88

    Article  Google Scholar 

  • Campbell I (2007) Chi squared and Fisher–Irwin test of two-by-two tables with small sample recommendations. Statist Med 26:3661–3675

    Article  Google Scholar 

  • Chapman ARO (1995) Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 31:1–32

    Article  Google Scholar 

  • Choi HG, Norton TA (2005) Competition and facilitation between germlings of Ascophyllum nodosum and Fucus vesiculosus. Mar Biol 147:525–532

    Article  Google Scholar 

  • Chopin T, Ugarte R (2006) The seaweed resources of Eastern Canada. In: Critchley AT, Ohno M, Largo DB (eds) CD-ROM world seaweed resources—an authoritative reference system. Version:1.0 Margraf Publishers GmbH

  • David PK (1943) Studies in the autecology of Ascophyllum nodosum. J Ecol 31:178–198

    Article  Google Scholar 

  • Davison IR, Pearson GA (1996) Stress tolerance in intertidal seaweeds. J Phycol 32:197–211

    Article  Google Scholar 

  • Dean RL, Connell JH (1987) Marine invertebrates in algal succession. III. Mechanisms linking habitat complexity with diversity. J Exp Mar Biol Ecol 109:249–273

    Article  Google Scholar 

  • DFO (2013) Assessment of information on Irish moss, rockweed, and kelp harvests in Nova Scotia. DFO Can Sci Advis Sec Sci Advis Rep 2013/004

  • Fortes MD, Lüning K (1980) Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod. Helgol Meeresun 34:15–29

    Article  Google Scholar 

  • Fujita RM, Wheeler PA, Edwards R (1989) Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar Ecol Prog Ser 53:293–303

    Article  Google Scholar 

  • Gallon RK, Robuchon M, Leroy B, Gall LL, Valero M, Feunteun E (2014) Twenty years of observed and predicted changes in subtidal red seaweed assemblages along a biogeographical transition zone: inferring potential causes from environmental data. J Biogeogr 41:2293–2306

    Article  Google Scholar 

  • Gattuso JP, Frankignoulle M, Wollast R (1998) Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu Rev Ecol Evol Syst 29:405–434

    Article  Google Scholar 

  • Gerard VA (1997) The role of nitrogen nutrition in high-temperature tolerance of the kelp, Laminaria saccharina (Chromophyta). J Phycol 33:800–810

    Article  CAS  Google Scholar 

  • Goff LJ, Liddle L, Silva PC, Voytek M, Coleman AW (1992) Tracing species invasion in Codium, a siphonous green alga, using molecular tools. Am J Bot 79:1279–1285

    Article  CAS  Google Scholar 

  • Gosner KL (1979) A field guide to the Atlantic Seashore. Houghton Mifflin Co, Massachusetts

    Google Scholar 

  • Hanisak MD (1979) Growth patterns of Codium fragile ssp. tomentosoides in response to temperature, irradiance, salinity, and nitrogen source. Mar Biol 50:319–332

    Article  CAS  Google Scholar 

  • Harley CDG, Hughes AR, Hultgren KM, Miner BG, Sorte CJB, Thornber CS, Rodriguez LF, Tomanek L, Williams SL (2006) The impacts of climate change in coastal marine ecosystems. Ecol Lett 9:228–241

    Article  Google Scholar 

  • Harley CDG, Anderson KM, Demes KW, Jorve JP, Kordas RL, Coyle TA (2012) Effects of climate change on global seaweed communities. J Phycol 48:1064–1078

    Article  CAS  Google Scholar 

  • Hemmi A, Jormalainen V (2002) Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83:1052–1064

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation, and vulnerability. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Contribution of working group to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373

    Article  Google Scholar 

  • Keser M, Swenarton JT, Foertch JF (2005) Effects of thermal input and climate change on growth of Ascophyllum nodosum (Fucales, Phaeophyceae) in eastern Long Island Sound (USA). J Sea Res 54:211–220

    Article  Google Scholar 

  • Knight M, Parke M (1950) A biological study of Fucus vesiculosus L. and F. serratus L. J Mar Biol Assoc UK 29:439–514

    Article  Google Scholar 

  • Kübler JE, Davison IR (1993) High-temperature tolerance of photosynthesis in the red alga Chondrus crispus. Mar Biol 117:327–335

    Article  Google Scholar 

  • Kübler JE, Dudgeon SR (1996) Temperature dependent change in the complexity of form of Chondrus crispus fronds. J Exp Mar Biol Ecol 207:15–24

    Article  Google Scholar 

  • Lapointe BE, Littler MM (1992) Nutrient availability to marine macroalgae in siliciclastic versus carbonate-rich coastal waters. Estuaries 15:75–82

    Article  CAS  Google Scholar 

  • Levin PS, Coyer JA, Petrick R, Good TP (2002) Community-wide effects on nonindigenous species on temperate rocky reefs. Ecology 83:3182–3193

    Article  Google Scholar 

  • Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM (2007) Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Change Biol 13:2592–2604

    Article  Google Scholar 

  • Lobban CS, Harrison PJ (1994) Seaweed ecology and physiology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lüning K (1979) Growth strategies of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Helgoland (North Sea). Mar Ecol Prog Ser 1:195–207

    Article  Google Scholar 

  • Lüning K (1990) Seaweeds their environment, biogeography, and ecophysiology (trans: Yarish C, Kirkan H). Wiley, New York (Original work published 1985)

  • Lüning K, Guiry MD, Masuda M (1986) Upper temperature tolerance of North Atlantic and North Pacific geographical isolates of Chondrus species (Rhodophyta). Helgol Meeresun 41:297–306

    Article  Google Scholar 

  • Matheson K, McKenzie CH, Sargent P, Hurley M, Wells T (2014) Northward expansion of the invasive green algae Codium fragile spp. fragile (Suringar) Hariot, 1889 into coastal waters of Newfoundland, Canada. Bioinvasions Rec 3:151–158

    Article  Google Scholar 

  • Merzouk A, Johnson LE (2011) Kelp distribution in the northwest Atlantic Ocean under a changing climate. J Exp Mar Biol Ecol 400:90–98

    Article  Google Scholar 

  • Neish AC, Shacklock PF, Fox CH, Simpson FJ (1977) The cultivation of Chondrus crispus factors affecting growth under greenhouse conditions. Can J Bot 55:2263–2271

    Article  CAS  Google Scholar 

  • Niemeck RA, Mathieson AC (1978) Physiological studies of intertidal fucoid algae. Bot Mar 21:221–227

    Article  Google Scholar 

  • Nygård CA, Dring MJ (2008) Influence of salinity, temperature, dissolved inorganic carbon and nutrient concentration on the photosynthesis and growth of Fucus vesiculosus from the Baltic and Irish Seas. Eur J Phycol 43:253–262

    Article  Google Scholar 

  • Pedersen MF, Borum J (1997) Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161:155–163

    Article  Google Scholar 

  • Pedersen MF, Nielsen SL, Banta GT (2004) Interactions between vegetation and nutrient dynamics in coastal marine ecosystems: an introduction. In: Nielsen SL, Banta GT, Pedersen MF (eds) Estuarine nutrient cycling: the influence of primary producers. Aquatic Ecology Series, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Petrie B, Topliss BJ, Wright CG (1987) Coastal upwelling and eddy development off Nova Scotia. J Geophysical Res 29:12979–12991

    Article  Google Scholar 

  • Prince JS, Kingsbury JM (1973a) The ecology of Chondrus crispus at Plymouth, Massachusetts. II: field Studies. Am J Bot 60:964–975

    Article  Google Scholar 

  • Prince JS, Kingsbury JM (1973b) The ecology of Chondrus crispus at Plymouth, Massachusetts. III: effect of elevated temperature on growth and survival. Biol Bull 145:580–588

    Article  Google Scholar 

  • Savage C, Elmgren R (2004) Macroalgal (Fucus vesiculosus) δ15N values trace decrease in sewage influence. Ecol Appl 14:517–526

    Article  Google Scholar 

  • Scheibling RE (1986) Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia. Oecologia 68:186–198

    Article  Google Scholar 

  • Scheibling RE, Gagnon P (2006) Competitive interactions between the invasive green alga Codium fragile ssp. tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Mar Ecol Prog Ser 325:1–14

    Article  Google Scholar 

  • Scheibling RE, Hennigar AW, Balch T (1999) Destructive grazing, epiphytism, and disease: the dynamics of sea urchin—kelp interactions in Nova Scotia. Can J Fish Aquat Sci 56:2300–2314

    Article  Google Scholar 

  • Schmidt AL, Scheibling RE (2005) Population dynamics of an invasive green alga, Codium fragile ssp. Tomentosoides, in tidepools on a rocky shore in Nova Scotia, Canada. Ecoscience 12:403–411

    Article  Google Scholar 

  • Schmidt AL, Scheibling RE (2006) A comparison of epifauna and epiphytes on native kelps (Laminaria species) and an invasive alga (Codium fragile ssp. tomentosoides) in Nova Scotia, Canada. Bot Mar 49:315–330

    Article  Google Scholar 

  • Schmidt AL, Scheibling RE (2007) Effects of native and invasive macroalgae canopies on composition and abundance of mobile benthic macrofauna and turf-forming algae. J Exp Mar Biol Ecol 341:110–130

    Article  Google Scholar 

  • Schmidt AL, Coll M, Romanuk TN, Lotze HK (2011) Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Mar Ecol Prog Ser 437:51–68

    Article  Google Scholar 

  • Setchell WA (1922) Cape Cod in its relation to the marine flora of New England. Rhodora 24:1–11

    Google Scholar 

  • Smith S (1981) Marine macrophytes as a global carbon sink. Science 211:838–840

    Article  CAS  Google Scholar 

  • Stengel D, Dring M (1997) Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur J Phycol 32:193–202

    Article  Google Scholar 

  • Stephenson TA, Stephenson A (1954) Life between tide-marks in North America: IIIA. Nova Scotia and Prince Edward Island: description of the region. J Ecol 42:14–45

    Article  Google Scholar 

  • Tanaka K, Taino S, Haraguchi H, Prendergast G, Hiraoka M (2012) Warming off southwestern Japan linked to distributional shifts of subtidal canopy-forming seaweeds. Ecol Evol 2:2854–2865

    Article  Google Scholar 

  • Taylor WR (1957) Marine Algae of the Northeast Coast of North America. The University of Michigan Press, Michigan

    Google Scholar 

  • Thomas M (1994) Littoral communities and zonation on rocky shores in the Bay of Fundy, Canada: an area of high tidal range. Biol J Linnean Soc 51:149–168

    Article  Google Scholar 

  • Thompson SM, Valiela I (1999) Effect of nitrogen loading on enzyme activity of macroalgae in estuaries in Waquoit Bay. Bot Mar 42:519–529

    Article  CAS  Google Scholar 

  • Topinka JA (1978) Nitrogen uptake by Fucus spiralis (Phaeophyceae). J Phycol 14:241–247

    Article  CAS  Google Scholar 

  • Touchette BW, Burholder JM, Glasgow JHB (2003) Variations in Eelgrass (Zostera marina L.) morphology and internal nutrient composition as influenced by increased temperature and water column nitrate. Estuaries 26:142–155

    Article  Google Scholar 

  • Ugarte R, Craigie JS, Critchley AT (2010) Fucoid flora of the rocky intertidal of the Canadian Maritimes: implications for the future with rapid climate change. In: Israel A, Einav R, Seckbach J (eds) Seaweeds and their role in globally changing environments cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, Heidelberg, London, New York

    Google Scholar 

  • Van Alstyne KL, Pelletreau KN, Kirby A (2009) Nutritional preferences override chemical defenses in determining food choice by a generalist herbivore, Littorina sitkana. J Exp Mar Biol Ecol 379:85–91

    Article  Google Scholar 

  • Vandermeulen H (2013) Information to support assessment of stock status of commercially harvested species of marine plants in Nova Scotia: Irish moss, rockweed and kelp. DFO Can Sci Advis Sec Res Doc 2013/042

  • Wernberg T, Thomsen MS, Tuya F, Kendrick GA, Staehr PA, Toohey BD (2010) Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. Ecol Lett 13:685–694

    Article  Google Scholar 

  • Wernberg T, Thomsen MS, Tuya F, Kendrick GA (2011) Biogenic habitat structure of seaweeds change along a latitudinal gradient in ocean temperature. J Exp Mar Biol Ecol 400:264–271

    Article  Google Scholar 

  • Worm B, Lotze HK (2006) Eutrophication, grazing, and algal blooms on rocky shores. Limnol Oceanogr 51:569–579

    Article  Google Scholar 

  • Worm B, Lotze HK, Sommer U (2000) Coastal food web structure, carbon storage and nitrogen retention regulated by consumer pressure and nutrient loading. Limnol Oceanogr 45:339–349

    Article  CAS  Google Scholar 

  • Yesson C, Bush LE, Davies AJ, Maggs CA, Brodie J (2015) Large brown seaweeds of the British Isles: evidence of changes in abundance over four decades. Estuar Coast Shelf S 155:167–175

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada with a grant to HKL and an Undergraduate Research Award to KLW, as well as a Sarah Lawson Research Scholarship to KLW. We thank B. Worm for his aid in diving for macroalgae, and M. Mayer, E. Chambers, and E. Colin for helping with the many water changes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristen L. Wilson.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible Editor: K. Bischof.

Reviewed by K. Timmermans and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 23 kb)

Supplementary material 2 (PDF 137 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, K.L., Kay, L.M., Schmidt, A.L. et al. Effects of increasing water temperatures on survival and growth of ecologically and economically important seaweeds in Atlantic Canada: implications for climate change. Mar Biol 162, 2431–2444 (2015). https://doi.org/10.1007/s00227-015-2769-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2769-7

Keywords

Navigation