Skip to main content
Log in

The preparation of jellyfish for stable isotope analysis

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Gelatinous zooplankton are important predators, prey, and nutrient conduits within marine ecosystems. Information obtained from jellyfish stable isotope compositions can be invaluable to biological and environmental research and management. Protocols for best practice in preparing jellyfish for stable isotope analysis, however, require standardisation to provide consistently comparable data, with ecologically significant changes in values due to freezing reported in the literature. Jellyfish are easily sampled during standard marine fieldwork, and usually frozen before analysis. Here, mesoglea from freshly caught moon jelly, Aurelia aurita, were treated by thorough washing and/or freezing, and compared with untreated sections from the same individuals. Jellyfish were captured in July 2013 from Buckler’s Hard Marina in southern UK (latitude: 50.801, longitude: − 1.423). Isotope and element ratio changes of carbon and nitrogen composition due to the treatment of the mesoglea were quantified. Both washing and freezing elevated δ15N values, with washing also decreasing the variance observed in these values. Untreated mesoglea showed the lowest δ13C values. Carbon-to-nitrogen elemental ratio increased with both washing and freezing. These results imply the presence of a water-soluble, isotopically depleted nitrogenous component in fresh jellyfish mesoglea. The concentration of this component varies among individuals, and thorough washing or freezing are recommended to ensure consistent stable isotope analyses of jellyfish mesoglea. This study describes a methodology aimed at improving the consistency and repeatability of stable isotope analyses of jellyfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arai MN (2005) Predation on pelagic coelenterates: a review. J Mar Biol Assoc UK 85:523–536. doi:10.1017/S0025315405011458

    Article  Google Scholar 

  • Barrow LM, Bjorndal KA, Reich KJ (2008) Effects of preservation method on stable carbon and nitrogen isotope values. Physiol Biochem Zool 81:688–693. doi:10.1086/588172

    Article  Google Scholar 

  • Bischof JC, Wolkers WF, Tsvetkova NM et al (2002) Lipid and protein changes due to freezing in Dunning AT-1 cells. Cryobiology 45:22–32

    Article  CAS  Google Scholar 

  • Brodeur R (1998) In situ observations of the association between juvenile fishes and scyphomedusae in the Bering Sea. Mar Ecol Prog Ser 163:11–20. doi:10.3354/meps163011

    Article  Google Scholar 

  • Burgess KB, Bennett MB (2017) Effects of ethanol storage and lipid and urea extraction on δ15N and δ13C isotope ratios in a benthic elasmobranch, the bluespotted maskray Neotrygon kuhlii. J Fish Biol 90:417–423. doi:10.1111/jfb.13164

    Article  CAS  Google Scholar 

  • Cardona L, Álvarez de Quevedo I, Borrell A et al (2012) Massive consumption of gelatinous plankton by mediterranean apex predators. PLoS ONE 7:e31329. doi:10.1371/journal.pone.0031329

    Article  CAS  Google Scholar 

  • Casciotti KL (2009) Inverse kinetic isotope fractionation during bacterial nitrite oxidation. Geochim Cosmochim Acta 73:2061–2076. doi:10.1016/j.gca.2008.12.022

    Article  CAS  Google Scholar 

  • Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol J 20:335–353. doi:10.1080/01490450303895

    Article  CAS  Google Scholar 

  • Condon RH, Steinberg DK, del Giorgio PA et al (2011) Jellyfish blooms result in a major microbial respiratory sink of carbon in marine systems. Proc Natl Acad Sci USA 108:10225–10230. doi:10.1073/pnas.1015782108

    Article  CAS  Google Scholar 

  • Condon RH, Duarte CM, Pitt KA et al (2013) Recurrent jellyfish blooms are a consequence of global oscillations. Proc Natl Acad Sci USA 110:1000–1005. doi:10.1073/pnas.1210920110

    Article  CAS  Google Scholar 

  • Costello J (1991) Complete carbon and nitrogen budgets for the hydromedusa Cladonema californicum (Anthomedusa: cladonemidae)*. Mar Biol 108:119–128

    Article  CAS  Google Scholar 

  • D’Ambra I, Carmichael RH, Graham WM (2014) Determination of δ13C and δ15N and trophic fractionation in jellyfish: implications for food web ecology. Mar Biol 161:473–480. doi:10.1007/s00227-013-2345-y

    Article  Google Scholar 

  • de Lafontaine Y, Leggett WC (1988) Predation by jellyfish on larval fish: an experimental evaluation employing in situ enclosures. Can J Fish Aquat Sci 45:1173–1190. doi:10.1139/f88-140

    Article  Google Scholar 

  • R Development Core Team R (2011) R: a language and environment for statistical computing. R Found Stat Comput 1:409

    Google Scholar 

  • Dodge KL, Logan JM, Lutcavage ME (2011) Foraging ecology of leatherback sea turtles in the Western North Atlantic determined through multi-tissue stable isotope analyses. Mar Biol 158:2813–2824. doi:10.1007/s00227-011-1780-x

    Article  Google Scholar 

  • Feuchtmayr H, Grey J (2003) Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Commun Mass Spectrom 17:2605–2610. doi:10.1002/rcm.1227

    Article  CAS  Google Scholar 

  • Fisk AT, Tittlemier SA, Pranschke JL, Norstrom RJ (2002) Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland sharks. Ecology 83:2162–2172. doi:10.1890/0012-9658(2002)083[2162:UACASI]2.0.CO;2

    Article  Google Scholar 

  • Fleming NEC, Houghton JDR, Magill CL, Harrod C (2011) Preservation methods alter stable isotope values in gelatinous zooplankton: implications for interpreting trophic ecology. Mar Biol 158:2141–2146. doi:10.1007/s00227-011-1714-7

    Article  Google Scholar 

  • Fleming NEC, Harrod C, Newton J, Houghton JDR (2015) Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology. PeerJ 3:e1110. doi:10.7717/peerj.1110

    Article  Google Scholar 

  • Gambini C, Abou B, Ponton A, Cornelissen AJM (2012) Micro- and macrorheology of jellyfish extracellular matrix. Biophys J 102:1–9. doi:10.1016/j.bpj.2011.11.4004

    Article  CAS  Google Scholar 

  • Gomez-Guillen MC, Martinez-Alvarez O, Montero P (2003) Functional and thermal gelation properties of squid mantle proteins affected by chilled and frozen storage. J Food Sci 68:1962–1967. doi:10.1111/j.1365-2621.2003.tb07002.x

    Article  CAS  Google Scholar 

  • Hoehn DP (2017) Population variability in Aurelia aurita. University of Southampton Doctoral Thesis, pp 182

  • Hussey NE, MacNeil MA, Fisk AT (2010) The requirement for accurate diet-tissue discrimination factors for interpreting stable isotopes in sharks. Hydrobiologia 654:1–5. doi:10.1007/s10750-010-0361-1

    Article  CAS  Google Scholar 

  • Jarman SN, McInnes JC, Faux C et al (2013) Adélie penguin population diet monitoring by analysis of food DNA in scats. PLoS ONE 8:e82227. doi:10.1371/journal.pone.0082227

    Article  Google Scholar 

  • Jesus FM, Pereira MR, Rosa CS et al (2015) Preservation methods alter carbon and nitrogen stable isotope values in crickets (Orthoptera: grylloidea). PLoS ONE 10:e0137650. doi:10.1371/journal.pone.0137650

    Article  Google Scholar 

  • Kaehler S, Pakhomov EA (2001) Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Mar Ecol Prog Ser 219:299–304

    Article  CAS  Google Scholar 

  • Kogovšek T, Tinta T, Klun K, Malej A (2014) Jellyfish biochemical composition: importance of standardised sample processing. Mar Ecol Prog Ser 510:275–288. doi:10.3354/meps10959

    Article  Google Scholar 

  • Lebrato M, Pitt KA, Sweetman AK et al (2012) Jelly-falls historic and recent observations: a review to drive future research directions. Hydrobiologia 690:227–245. doi:10.1007/s10750-012-1046-8

    Article  CAS  Google Scholar 

  • Li Y, Zhang Y, Hussey NE, Dai X (2016) Urea and lipid extraction treatment effects on δ15N and δ13C values in pelagic sharks. Rapid Commun Mass Spectrom 30:1–8. doi:10.1002/rcm.7396

    Article  Google Scholar 

  • Logan JM, Jardine TD, Miller TJ et al (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846

    Article  Google Scholar 

  • MacKenzie KM, Longmore C, Preece C et al (2014) Testing the long-term stability of marine isoscapes in shelf seas using jellyfish tissues. Biogeochemistry 121:441–454. doi:10.1007/s10533-014-0011-1

    Article  Google Scholar 

  • Mackie IM (1993) The effects of freezing on flesh proteins. Food Rev Int 9:575–610. doi:10.1080/87559129309540979

    Article  CAS  Google Scholar 

  • Makri M (2010) The biochemical, textural and sensory properties of king scallop (Pecten maximus) meats frozen at different characteristic freezing times. African J Biotechnol 9:4374–4385

    CAS  Google Scholar 

  • Malej A, Faganeli J, Pezdič J (1993) Stable isotope and biochemical fractionation in the marine pelagic food chain: the jellyfish Pelagia noctiluca and net zooplankton. Mar Biol Int J Life Ocean Coast Waters 116:565–570. doi:10.1007/BF00355475

    CAS  Google Scholar 

  • Martínez Del Rio C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111. doi:10.1111/j.1469-185X.2008.00064.x

    Article  Google Scholar 

  • Mateo MA, Serrano O, Serrano L, Michener RH (2008) Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes. Oecologia 157:105–115. doi:10.1007/s00442-008-1052-8

    Article  Google Scholar 

  • Matsakis S (1992) Ammonia excretion rate of Clytia spp. hydro-medusae (Cnidaria, Thecata): effects of individual dry weight, temperature and food availability. Mar Ecol Prog Ser 87:55–63

    Article  Google Scholar 

  • Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140. doi:10.1016/0016-7037(84)90204-7

    Article  CAS  Google Scholar 

  • Nagata R, Moreira M, Pimentel C, Morandini A (2015) Food web characterization based on δ15N and δ13C reveals isotopic niche partitioning between fish and jellyfish in a relatively pristine ecosystem. Mar Ecol Prog Ser 519:13–27. doi:10.3354/meps11071

    Article  CAS  Google Scholar 

  • O’Rorke R, Lavery SD, Wang M et al (2015) Phyllosomata associated with large gelatinous zooplankton: hitching rides and stealing bites. ICES J Mar Sci 72:i124–i127. doi:10.1093/icesjms/fsu163

    Article  Google Scholar 

  • Ozcelikkale A, Han B (2016) Thermal destabilization of collagen matrix hierarchical structure by freeze/thaw. PLoS ONE 11:e0146660. doi:10.1371/journal.pone.0146660

    Article  Google Scholar 

  • Paredi ME, Roldan HA, Crupkin M (2006) Changes in myofibrillar proteins and lipids of squis (Illex argentinus) during frozen storage. J Food Biochem 30:604–621. doi:10.1111/j.1745-4514.2006.00088.x

    Article  CAS  Google Scholar 

  • Paredi ME, Pagano MR, Crupkin M (2010) Biochemical and physicochemical properties of actomyosin and myofibrils from frozen stored flounder (Paralichthys patagonicus) fillets. J Food Biochem 34:983–997. doi:10.1111/j.1745-4514.2010.00344.x

    Article  CAS  Google Scholar 

  • Pikitch EK, Santora C, Babcock EA et al (2004) Ecosystem-based fishery management. Science 305:346–347. doi:10.1126/science.1098222

    Article  CAS  Google Scholar 

  • Pitt KA, Clement A-L, Connolly RM, Thibault-Botha D (2008) Predation by jellyfish on large and emergent zooplankton: implications for benthic–pelagic coupling. Estuar Coast Shelf Sci 76:827–833. doi:10.1016/j.ecss.2007.08.011

    Article  Google Scholar 

  • Pitt KA, Connolly RM, Meziane T (2009a) Stable isotope and fatty acid tracers in energy and nutrient studies of jellyfish: a review. Hydrobiologia 616:119–132. doi:10.1007/s10750-008-9581-z

    Article  CAS  Google Scholar 

  • Pitt KA, Welsh DT, Condon RH (2009b) Influence of jellyfish blooms on carbon, nitrogen and phosphorus cycling and plankton production. Hydrobiologia 616:133–149. doi:10.1007/s10750-008-9584-9

    Article  CAS  Google Scholar 

  • Pitt KA, Duarte CM, Lucas CH et al (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS ONE 8:1–10. doi:10.1371/journal.pone.0072683

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA et al (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x

    Article  Google Scholar 

  • Purcell JE (2003) Predation on zooplankton by large jellyfish, Aurelia labiata, Cyanea capillata and Aequorea aequorea, in Prince William Sound, Alaska. Mar Ecol Prog Ser 246:137–152. doi:10.3354/meps246137

    Article  Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44. doi:10.1023/A:1011883905394

    Article  Google Scholar 

  • Purcell JE, Breitburg DL, Decker MB et al (2001) Pelagic cnidarians and ctenophores in low dissolved oxygen environments: A review. In: Rabalais NN, Turner RE (eds) Coastal Hypoxia: Consequences for Living Resources and Ecosystems. American Geophysical Union, Washington D.C, pp 77–100. doi:10.1029/CE058p0077

    Chapter  Google Scholar 

  • Purcell J, Uye S, Lo W (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174. doi:10.3354/meps07093

    Article  Google Scholar 

  • Schmid V, Bally A, Beck K et al (1991) The extracellular matrix (mesoglea) of hydrozoan jellyfish and its ability to support cell adhesion and spreading. Hydrobiologia 216–217:3–10. doi:10.1007/BF00026436

    Article  Google Scholar 

  • Shaposhnikova T, Matveev I, Napara T, Podgornaya O (2005) Mesogleal cells of the jellyfish Aurelia aurita are involved in the formation of mesogleal fibres. Cell Biol Int 29:952–958. doi:10.1016/j.cellbi.2005.08.008

    Article  CAS  Google Scholar 

  • Søreide J, Tamelander T, Hop H et al (2006) Sample preparation effects on stable C and N isotope values: a comparison of methods in Arctic marine food web studies. Mar Ecol Prog Ser 328:17–28. doi:10.3354/meps328017

    Article  Google Scholar 

  • Sotiropoulos MA, Tonn WM, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for food web studies. Ecol Freshw Fish 13:155–160. doi:10.1111/j.1600-0633.2004.00056.x

    Article  Google Scholar 

  • Sweeting CJ, Polunin NVC, Jennings S (2006) Effects of chemical lipid extraction and arithmetic lipid correction on stable isotope ratios of fish tissues. Rapid Commun Mass Spectrom 20:595–601. doi:10.1002/rcm.2347

    Article  CAS  Google Scholar 

  • Sweetman AK, Smith CR, Dale T, Jones DOB (2014) Rapid scavenging of jellyfish carcasses reveals the importance of gelatinous material to deep-sea food webs. Proc Biol Sci 281:20142210. doi:10.1098/rspb.2014.2210

    Article  Google Scholar 

  • Syväranta J, Vesala S, Rask M et al (2007) Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600:121–130. doi:10.1007/s10750-007-9181-3

    Article  Google Scholar 

  • Syväranta J, Martino A, Kopp D et al (2011) Freezing and chemical preservatives alter the stable isotope values of carbon and nitrogen of the Asiatic clam (Corbicula fluminea). Hydrobiologia 658:383–388. doi:10.1007/s10750-010-0512-4

    Article  Google Scholar 

  • Towanda T, Thuesen EV (2006) Ectosymbiotic behavior of Cancer gracilis and its trophic relationships with its host Phacellophora camtschatica and the parasitoid Hyperia medusarum. Mar Ecol Prog Ser 315:221–236. doi:10.3354/meps315221

    Article  Google Scholar 

  • Ueng Y-E, Chow C-J (1998) Textural and histological changes of different squid mantle muscle during frozen storage. J Agric Food Chem 46:4728–4733. doi:10.1021/jf9803278

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ocean and Earth Science at the University of Southampton for funding this study. Many thanks also to David Locke and Joseph Jones for help with jellyfish collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsteen M. MacKenzie.

Ethics declarations

Funding was provided to KMM by Ocean and Earth Science at the University of Southampton, and the authors have no conflict of interest. The experiments comply with the current laws of the country (UK) in which they were performed. The species collected is a very common jellyfish and is not protected throughout its range.

Additional information

Responsible Editor: S. Shumway.

Reviewed by P. Kremer and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TXT 2 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacKenzie, K.M., Trueman, C.N., Lucas, C.H. et al. The preparation of jellyfish for stable isotope analysis. Mar Biol 164, 219 (2017). https://doi.org/10.1007/s00227-017-3242-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3242-6

Navigation