Skip to main content

Advertisement

Log in

Seasonal changes in environmental nutrient availability and biomass composition in a coral reef sponge

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Sponges are crucial ecosystem engineers in most marine habitats, playing a critical role in cycling elements between the water column and the sea floor. Despite this, it is unclear how the nutritional status of the seawater surrounding a sponge influences its biochemical composition. Here, we investigate seasonal availability of the major nutrients in the water surrounding Amphimedon queenslandica, a coral reef demosponge inhabiting a low-energy reef flat environment adjacent to Heron Island on the southern Great Barrier Reef. Specifically, we investigate how nutrient availability might influence the biomass composition of this sponge species by analysing five replicated water and sponge samples collected over 13 months. Eleven environmental parameters had significant differences between at least two seasons. Some of these changes in nutrient availability were consistent with known ecological processes occurring on Heron Island and its surrounding waters. For instance, the availability and sources of carbon and nitrogen changed throughout the year, with both strongly influenced by nutrients emanating from the summer seabird rookery on the island. Several environmental parameters were strongly correlated, such as total and dissolved organic carbon with each other and with nitrate and sulfate, respectively. Amongst biomass components, skeletal content was significantly correlated with temperature, DNA with total organic carbon, and skeleton and lipid biomass with orthophosphate concentration, which was significantly higher in lower water temperatures. Nonetheless, we observed few compelling correlations between biomass composition in A. queenslandica and nutritional status of the surrounding seawater on a seasonal time scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anavy L, Levin M, Khair S, Nakanishi N, Fernandez-Valverde SL, Degnan BM, Yanai I (2014) BLIND ordering of large-scale transcriptomic developmental timecourses. Development 141:1161–1166

    Article  CAS  Google Scholar 

  • Bayer K, Schmitt S, Hentschel U (2008) Physiology, phylogeny and in situ evidence for bacterial and archaeal nitrifiers in the marine sponge Aplysina aerophoba. Environ Microbiol 10:2942–2955

    Article  CAS  Google Scholar 

  • Bayne BL, Newell RC (1983) Physiological energetics of marine Mollusca. In: Salueddin ASM, Wilbur KM (eds) The Mollusca, vol 4. Elseiver, New York, pp 407–515

    Google Scholar 

  • Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353

    Article  Google Scholar 

  • Birkeland C (1997) Life and death of coral reefs. Chapman & Hall, New York

    Book  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1171–1789

    Article  Google Scholar 

  • Crossland CJ, Hatcher BG, Smith SV (1991) Role of coral reefs in global ocean production. Coral Reefs 10:55–64

    Article  Google Scholar 

  • de Goeij JM, Moodley L, Houtekamer M, Carballeira N, van Duyl FC (2008a) Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM-feeding. Limnol Oceanogr 53:1376–1386

    Article  Google Scholar 

  • de Goeij JM, van den Berg H, van Oostveen MM, Epping E, van Duyl FC (2008b) Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Mar Ecol Prog Ser 357:139–151

    Article  Google Scholar 

  • de Goeij JM, van Oevelen D, Vermeij MJA, Osinga R, Middelburg JJ, de Goeij AFPM, Admiraal W (2013) Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342:108–110

    Article  Google Scholar 

  • Degnan BM, Adamska M, Craigie A, Degnan SM, Fahey B, Gauthier M, Hooper JNA, Larroux C, Leys SP, Lovas E, Richards GS (2009) The demosponge Amphimedon queenslandica: reconstructing the ancestral metazoan genome and deciphering the origin of animal multicellularity. Emerging model organisms: a laboratory manual, vol 1. Cold Spring Harbor Laboratory, New York, pp 139–166

    Google Scholar 

  • Degnan BM, Adamska M, Richards GS, Larroux C, Leininger S, Bergum B, Calcino A, Taylor K, Nakanishi N, Degnan SM (2015) Porifera. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates, vol 1. Springer, New York, pp 65–106

    Chapter  Google Scholar 

  • Elvin DW (1979) The relationship of seasonal changes in the biochemical components to the reproductive behavior of the intertidal sponge, Haliclona permollis. Biol Bull 156:47–61

    Article  CAS  Google Scholar 

  • Ereskovsky AV (2010) The comparative embryology of sponges. Springer, Dordrecht

    Book  Google Scholar 

  • Erler DV, Santos IR, Eyre BD (2014) Inorganic nitrogen transformations within permeable carbonate sands. Cont Shelf Res 77:69–80

    Article  Google Scholar 

  • Eyre BD, Glud RN, Patten N (2008) Mass coral spawning: a natural large-scale nutrient addition experiment. Limnol Oceanogr 53:997–1013

    Article  CAS  Google Scholar 

  • Fernandez-Valverde SL, Calcino AD, Degnan BM (2015) Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica. BMC Genomics 16:720

    Article  Google Scholar 

  • Fieth RA, Gauthier MEA, Bayes J, Green KM, Degnan SM (2016) Ontogenetic changes in the bacterial symbiont community of the tropical demosponge Amphimedon queenslandica: metamorphosis is a new beginning. Front Mar Sci 3:228

    Article  Google Scholar 

  • Frith CA (1983) Some aspects of lagoon sedimentation and circulation at One Tree Reef, southern Great Barrier Reef. BMR J Aust Geol Geophys 8:211–221

    Google Scholar 

  • Gauthier MEA, Watson JR, Degnan SM (2016) Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Front Mar Sci 3:196

    Article  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine crenarchaeota. PLoS Biol 4:95

    Article  Google Scholar 

  • Hatcher BG (2003) Coral reef primary productivity. A hierarchy of pattern and process. Trend Ecol Evol 5:149–155

    Article  Google Scholar 

  • Hentschel U, Fieseler L, Wehrl M, Gernert C, Steinert M, Hacker J, Horn M (2003) Microbial diversity of marine sponges. Prog Mol Subcell Biol 37:59–88

    Article  CAS  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Micro Ecol 55:167–177

    Article  CAS  Google Scholar 

  • Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy M-L, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Micro 11:2228–2243

    Article  CAS  Google Scholar 

  • Hooper JN, Van Soest RW (2006) A new species of Amphimedon (Porifera, Demospongiae, Haplosclerida, Niphatidae) from the Capricorn-Bunker Group of Islands, Great Barrier Reef, Australia: target species for the “sponge genome project”. Zootaxa 1314:31–39

    Google Scholar 

  • Kang C-K, Choy EJ, Lee WC, Kim NJ, Park H-J, Choi K-S (2011) Physiological energetics and gross biochemical composition of the ascidian Stylea clava cultured in suspension in a temperate bay of Korea. Aquaculture 319:168–177

    Article  CAS  Google Scholar 

  • Koopmans M, van Rijswijk P, Martens D, Egorova-Zachernyuk TA, Middelburg JJ, Wijffels RH (2010) Carbon conversion and metabolic rate in two marine sponges. Mar Biol 158:9–20

    Article  Google Scholar 

  • Koopmans M, van Rijswijk P, Boschker HTS, Marco H, Martens D, Wijffels RH (2015) Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Mar Biotech 17:43–54

    Article  CAS  Google Scholar 

  • Leys SP, Larroux C, Gauthier M, Adamska M, Fahey B, Richards GS, Degnan SM, Degnan BM (2008) Isolation of Amphimedon developmental material. Cold Spr Harb Prot. doi:10.1101/pdb.prot5095

    Google Scholar 

  • Liu MY, Kjelleberg S, Thomas T (2010) Functional genomic analysis of an uncultured delta-proteobacterium in the sponge Cymbastela concentrica. ISME J 5:427–435

    Article  Google Scholar 

  • McMurray SE, Finelli CM, Pawlik JR (2015) Population dynamics of giant barrel sponges on Florida coral reefs. J Exp Mar Biol Ecol 473:73–80

    Article  Google Scholar 

  • Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61:888–898

    Article  Google Scholar 

  • Pawlik JR, McMurray SE, Erwin P, Zea S (2015) A review of evidence for food limitation of sponges on Caribbean reefs. Mar Ecol Prog Ser 519:265–283

    Article  CAS  Google Scholar 

  • Pawlik JR, Burkepile DE, Thurber RV (2016) A vicious circle? Altered carbon and nutrient cycling may explain the low resilience of Caribbean coral reefs. Bioscience 66:470–476

    Article  Google Scholar 

  • Pile AJ, Patterson MR, Witman JD (1996) In situ grazing on plankton. Mar Ecol Prog Ser 141:95–102

    Article  Google Scholar 

  • Powell A, Smith DJ, Hepburn LJ, Jones T, Berman J, Jompa J, Bell JJ (2014) Reduced diversity and high sponge abundance on a sedimented Indo-Pacific reef system: implications for future changes in environmental quality. PLoS One 9:e85253

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivations in sea water and their relation to the composition of plankton. In: Johnston J, Daniel RJ (eds) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 176–192

    Google Scholar 

  • Ribes M, Coma R, Gili J-M (1999) Natural diet and grazing rate of the temperate sponge Dysidea avara (Demospongiae, Dendroceratida) throughout an annual cycle. Mar Ecol Prog Ser 176:179–190

    Article  Google Scholar 

  • Rice EW, Baird RB, Eaton AD, Clesceri LS (eds) (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC

    Google Scholar 

  • Rix L, de Goeij JM, Mueller CE, Struck U, Middelburg JJ, van Duyl FC, Al-Horani FA, Wild C, Naumann MS, van Oevelen D (2016) Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci Rep 6:18715

    Article  CAS  Google Scholar 

  • Roff G, Mumby PJ (2012) Global disparity in the resilience of coral reefs. Trend Ecol Evol 27:404–413

    Article  Google Scholar 

  • RStudio Team (2015) RStudio: integrated development for R. RStudio Inc, Boston

    Google Scholar 

  • Sammarco PW, Risk MJ, Schwarcz HP, Heikoop JM (1999) Cross-continental shelf trends in coral δ15N on the Great Barrier Reef: further consideration of the reef nutrient paradox. Mar Ecol Prog Ser 180:131–138

    Article  CAS  Google Scholar 

  • Santos IR, Erler D, Tait D, Eyre BD (2010) Breathing of a coral cay: tracing tidally driven seawater recirculation in permeable coral reef sediments. J Geophys Res 115:C12010

    Article  Google Scholar 

  • Smith JS, Johnson CR (1995) Nutrient inputs from seabirds and humans on a populated coral cay. Mar Ecol Prog Ser 124:189–200

    Article  Google Scholar 

  • Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft Ben J, Vervoort M, Kosik KS, Manning G, Degnan BM, Rokhsar DS (2010) The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466:720–726

    Article  CAS  Google Scholar 

  • Sterner RW, Andersen T, Elser JJ, Hessen DO, Hood JM, McCauley E, Urabe J (2008) Scale-dependent carbon: nitrogen: phosphorus seston stoichiometry in marine and freshwaters. Limnol Oceanogr 53:1169–1180

    Article  CAS  Google Scholar 

  • van Duyl F, Jan Gast G (2001) Linkage of small-scale spatial variations in DOC, inorganic nutrients and bacterioplankton growth with different coral reef water types. Aqua Micro Ecol 24:17–26

    Article  Google Scholar 

  • Watson J, Brennan T, Degnan B, Degnan S, Krömer J (2014a) Analysis of the biomass composition of the demosponge Amphimedon queenslandica on Heron Island Reef, Australia. Mar Drugs 12:3733–3753

    Article  CAS  Google Scholar 

  • Watson J, Degnan B, Degnan S, Krömer JO (2014b) Determining the biomass composition of a sponge holobiont for flux analysis. Methods Mol Biol 1191:107–125

    Article  CAS  Google Scholar 

  • Webster NS, Taylor MW (2011) Marine sponges and their microbial symbionts: love and other relationships. Environ Micro 14:335–346

    Article  Google Scholar 

  • Weisz JB, Lindquist N, Martens CS (2007) Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155:367–376

    Article  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wild C, Rasheed M, Werner U, Franke U, Johnstone R (2004) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Article  Google Scholar 

  • Wild C, Woyt H, Heuttel M (2005) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  CAS  Google Scholar 

  • Wild C, Naumann M, Niggl W, Haas A (2010) Carbohydrate composition of mucus released by scleractinian warm- and cold-water reef corals. Aqua Biol 10:41–45

    Article  Google Scholar 

  • Wilkinson CR, Cheshire AC (1990) Comparisons of sponge populations across the barrier reefs of Australia and Belize: evidence for higher productivity in the Caribbean. Mar Ecol Prog Ser 67:285–294

    Article  Google Scholar 

  • Wulff J (2001) Assessing and monitoring coral reef sponges: why and how? Bull Mar Sci 69:831–846

    Google Scholar 

  • Wulff J (2012) Ecological interactions and the distribution, abundance, and diversity of sponges. Adv Mar Biol 61:273–344

    Article  Google Scholar 

  • Yahel G, Sharp JH, Marie D, Hase C (2003) In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnol Oceanogr 48:141–149

    Article  Google Scholar 

Download references

Acknowledgements

We thank staff of the Heron Island research Station for their assistance with field work, and Dr Simon Blomberg for advice on statistical analysis. Two anonymous reviewers provided feedback that significantly improved this article, for which we are grateful. This research has been support by grants from the Australian Research Council to SMD and BMD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandie M. Degnan.

Ethics declarations

Funding

This study was funded by grants from the Australian Research Council to SM Degnan (Grant Nos. DP110104601 and DP0985995).

Conflict of interest

Jabin Watson declares that he has no conflict of interest. Jens Kroemer declares that he has no conflict of interest. Bernard Degnan declares that he has no conflict of interest. Sandie Degnan declares that she has no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Sponge specimens were collected in accordance with the guidelines of the Great Barrier Reef Marine Park Authority under research collection permit G12/35053.1.

Additional information

Responsible Editor: M. Huettel.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watson, J.R., Krömer, J.O., Degnan, B.M. et al. Seasonal changes in environmental nutrient availability and biomass composition in a coral reef sponge. Mar Biol 164, 135 (2017). https://doi.org/10.1007/s00227-017-3167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3167-0

Navigation