Skip to main content

Advertisement

Log in

A bank divided: quantifying a spatial and temporal connectivity break between the Campeche Bank and the northeastern Gulf of Mexico

  • Invasive Species - Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Marine connectivity over seascapes enables the persistence of metapopulations and is often regulated in part by an organism’s pelagic larval duration (PLD), fecundity, mortality, and ocean conditions. The Campeche Bank (CB) in the southern Gulf of Mexico flanks the strong-flowing Loop Current and is important ecologically and economically in the context of mesoscale connectivity to the Gulf. Here we use a biophysical model to examine connectivity between the CB and the northeastern Gulf (NEGOM) of simulated populations of lionfish (Pterois volitans/miles), red grouper (Epinephelus morio), and a generic marine organism. Our purpose was to assess longitudinal connectivity across the CB to the NEGOM and also to quantify this connectivity over a range of PLDs and organism fecundities. From this work, we find that portions of the northeastern perimeter of the CB in water depths between 50 and 300 m are the majority sources of lionfish and red grouper recruits to the NEGOM. This finding is important as deep waters on the bank are often heavily targeted by commercial fishers and are also beyond the reach of present lionfish control regimes. We also demonstrate that buoyant larvae must remain in the water column for a minimum of ten days to reach the NEGOM from the CB given prevailing water flow, though 45–50 days provides maximum connectivity. These findings are relevant for invasive species control, fisheries management, ecosystem services, and preserving metapopulations of marine fauna sympatric to the both regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrenholz DW, Morris JA (2010) Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Environ Biol Fishes 88:305–309

    Article  Google Scholar 

  • Akins JL, Morris JA, Green SJ (2014) In situ tagging technique for fishes provides insight into growth and movement of invasive lionfish. Ecol Evol 4:3768–3777

    Article  Google Scholar 

  • Albañez-Lucero MO, Arreguin-Sanchez F (2009) Modelling the spatial distribution of red grouper (Epinephelus morio) at Campeche Bank, México, with respect substrate. EcolModell 220:2744–2750

    Google Scholar 

  • Albins MA (2015) Invasive Pacific lionfish Pterois volitans reduce abundance and species richness of native Bahamian coral-reef fishes. Mar Ecol Prog Ser 522:231–243

    Article  Google Scholar 

  • Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238

    Article  Google Scholar 

  • Albins MA, Hixon MA (2013) Worst case scenario: potential long-term effects of invasive predatory lionfish (Pterois volitans) on Atlantic and Caribbean coral-reef communities. Environ Biol Fishes 96:1151–1157

    Article  Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA Tech Memo NESDIS NGDC 24:1–19

    Google Scholar 

  • Briggs JC (1974) Marine zoogeography. McGraw Hill, New York

    Google Scholar 

  • Burgos R, Defeo O (2004) Long-term population structure, mortality and modeling of a tropical multi-fleet fishery: the red grouper Epinephelus morio of the Campeche Bank, Gulf of Mexico. Fish Res 66:325–335

    Article  Google Scholar 

  • Burgos JM, Sedberry GR, Wyanski DM, Harris PJ (2007) Life history of red grouper (Epinephelus morio) off the coasts of North Carolina and South Carolina. Bull Mar Sci 80:45–65

    Google Scholar 

  • Coleman FC, Koenig CC (2010) The effects of fishing, climate change, and other anthropogenic disturbances on red grouper and other reef fishes in the Gulf of Mexico. Integr Comp Biol 50:201–212

    Article  Google Scholar 

  • Coleman FC, Koenig CC, Collins LA (1996) Reproductive styles of shallow-water groupers (Pisces: Serranidae) in the eastern Gulf of Mexico and the consequences of fishing spawning aggregations. Environ Biol Fishes 47:129–141

    Article  Google Scholar 

  • Collins LA, Fitzhugh GR, Lombardi-Carlson LA, Lyon HM, Walling WT, Oliver DW (2002) Characterization of red grouper (Serranidae: Epinephelus morio) reproduction from the eastern Gulf of Mexico. National Marine Fisheries Service. Panama City Laboratory. Contribution Series 7

  • Comyns BH, Shaw RF, Lyczkowski-Shultz J (2003) Small-scale spatial and temporal variability in growth and mortality of fish larvae in the subtropical northcentral Gulf of Mexico: implications for assessing recruitment success. Fish Bull 101:10–21

    Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  CAS  Google Scholar 

  • Doi T, Mendizabal D, Contreras M (1981) Análisis preliminar de la población de mero Epinephelus morio (Valenciennes), en el Banco de Campeche. Ciencia Pesquera 1(1). I. N. P. SEPESCA, México

  • Frisk MG, Jordaan A, Miller TJ (2014) Moving beyond the current paradigm in marine population connectivity: are adults the missing link? Fish Fish 15:242–254

    Article  Google Scholar 

  • Giménez-Hurtado E, Coyula-Pérez-Puelles R, Lluch-Cota SE, González-Yanez AA, Moreno-García V, Burgos-de-la-Rosa R (2005) Historical biomass, fishing mortality, and recruitment trends of the Campeche Bank red grouper (Epinephelus morio). Fish Res 71:267–277

    Article  Google Scholar 

  • Green SJ, Akins JL, Maljković A, Côté IM (2012) Invasive lionfish drive Atlantic coral reef fish declines. PLoS ONE 7:e32596

    Article  CAS  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse G, Huth A (2006) A standard protocol for describing individual-based and agent-based models. Ecol Modell 198:115–126

    Article  Google Scholar 

  • Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Modell 221:2760–2768

    Article  Google Scholar 

  • Hackerott S, Valdivia A, Green SJ, Côté IM, Cox CE, Akins L et al (2013) Native predators do not influence invasion success of Pacific lionfish on Caribbean reefs. PLoS ONE 8:e68259

    Article  CAS  Google Scholar 

  • Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol 71:214–222

    Article  CAS  Google Scholar 

  • Hare JA, Whitfield PE (2003) An integrated assessment of the introduction of lionfish (Pterois volitans/miles complex) to the western Atlantic Ocean. NOAA Tech Memo NOSNCCOS 2:1–21

    Google Scholar 

  • Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79

    Article  Google Scholar 

  • Heist EJ, Gold JR (2000) DNA microsatellite loci and genetic structure of Red Snapper in the Gulf of Mexico. Trans Am Fish Soc 129:469–475

    Article  CAS  Google Scholar 

  • Hernandez A, Seijo JC (2003) Spatial distribution analysis of red grouper (Epinephelus morio) fishery in Yucatan, Mexico. Fish Res 63:135–141

    Article  Google Scholar 

  • Johnson DR, Perry HM, Lyczkowski-Shultz J (2013) Connections between Campeche Bank and red snapper populations in the Gulf of Mexico via modeled larval transport. Trans Am Fish Soc 142:50–58

    Article  Google Scholar 

  • Johnston MW, Akins JL (2016) The Non-native royal damsel (Neopomacentrus cyanomos) in the southern Gulf of Mexico; an invasion risk? Mar Biol 163:1–14

    Article  CAS  Google Scholar 

  • Johnston MW, Purkis SJ (2014) Lionfish in the eastern tropical and north Pacific; a cellular automaton approach to risk assessment. Biol Invasions 16:2681–2695

    Article  Google Scholar 

  • Johnston MW, Purkis SJ (2015) A coordinated and sustained international strategy is required to turn the tide on the Atlantic lionfish invasion. Mar Ecol Prog Ser 533:219–235

    Article  Google Scholar 

  • Johnston MW, Purkis SJ (2016) Forecasting the success of invasive marine species; lessons learned from purposeful reef fish releases in the Hawaiian Islands. Fish Res 174:190–200

    Article  Google Scholar 

  • Jones GP, Planes S, Thorrold SR (2005) Coral reef fish larvae settle close to home. Curr Biol 15:1314–1318

    Article  CAS  Google Scholar 

  • Karnauskas M, Walter JF, Paris CB (2013) Use of the Connectivity Modeling System to estimate movements of red snapper (Lutjanus campechanus) recruits in the northern Gulf of Mexico. SEDAR31-AW10. SEDAR, North Charleston, SC

  • Kavanagh KD, Alford RA (2003) Sensory and skeletal development and growth in relation to the duration of the embryonic and larval stages in damselfishes (Pomacentridae). Biol J Linn Soc 80:187–206

    Article  Google Scholar 

  • Kool JT, Paris CB, Andréfouët S, Cowen RK (2010) Complex migration and the development of genetic structure in subdivided populations: an example from Caribbean coral reef ecosystems. Ecography 33:597–606

    Google Scholar 

  • Kourafalou VH, Peng G, Kang H, Hogan PJ, Smedstad OM, Weisberg RH (2009) Evaluation of global ocean data assimilation experiment products on South Florida nested simulations with the Hybrid Coordinate Ocean Model. Ocean Dyn 59:47–66

    Article  Google Scholar 

  • Lorenzen K (1996) The relationship between body weight and natural mortality in juvenile and adult fish: a comparison of natural ecosystems and aquaculture. J Fish Biol 49:627–647

    Article  Google Scholar 

  • Morris JA Jr, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fishes 86:389–398

    Article  Google Scholar 

  • Morris JA Jr, Whitfield PE (2009) Biology, ecology, control and management of the invasive Indo Pacific lionfish: an updated integrated assessment. NOAA Tech Memo NOSNCCOS 99:1–57

    Google Scholar 

  • Morris JA Jr, Shertzer KW, Rice JA (2011) A stage-based matrix population model of invasive lionfish with implications for control. Biol Invasions 13:7–12

    Article  Google Scholar 

  • Moustaka-Gouni M, Kormas KA, Scotti M, Vardaka E, Sommer U (2016) Warming and acidification effects on planktonic heterotrophic pico-and nanoflagellates in a mesocosm experiment. Protist 167:389–410

    Article  Google Scholar 

  • Mumby PJ, Harborne AR, Brumbaugh DR (2011) Grouper as a natural biocontrol of invasive lionfish. PLoS ONE 6(6):e21510

    Article  CAS  Google Scholar 

  • Paris CB, Cowen RK (2004) Direct evidence of a biophysical retention mechanism for coral reef fish larvae. Limnol Oceanogr 49:1964–1979

    Article  Google Scholar 

  • Paris CB, Chérubin LM, Srinivasan A, Cowen RK (2013) Surfing, spinning, or diving from reef to reef: how does it change population connectivity? Mar Ecol Prog Ser 347:285–300

    Article  Google Scholar 

  • Philibotte J (2002) Pelagic larval duration of the Caribbean wrasse, Thalassoma bifasciatum. Biol Bull 203:245–246

    Article  Google Scholar 

  • Prugh LR, Stoner CJ, Epps CW et al (2009) The rise of the mesopredator. Bioscience 59:779–791

    Article  Google Scholar 

  • Richardson LR, Gold JR (1997) Mitochondrial DNA diversity in and population structure of red grouper, Epinephelus morio, from the Gulf of Mexico. Fish Bull 95:174–179

    Google Scholar 

  • Roberts CM (1995) Effects of fishing on the ecosystem structure of coral reefs. Conserv Biol 9:988–995

    Article  Google Scholar 

  • Sanvicente-Añorve L, Zavala-Hidalgo J, Allende-Arandía ME, Hermoso-Salazar M (2014) Connectivity patterns among coral reef systems in the southern Gulf of Mexico. Mar Ecol Prog Ser 49:27–41

    Article  Google Scholar 

  • Scott-Denton E, Cryer PF, Gocke JP, Harrelson MR, Kinsella DL, Pulver JR, Smith RC, Williams JA (2011) Descriptions of the US Gulf of Mexico reef fish bottom longline and vertical line fisheries based on observer data. Mar Fish Rev 73:1–26

    Google Scholar 

  • Sellers AJ, Ruiz GM, Leung B, Torchin ME (2015) Regional variation in parasite species richness and abundance in the introduced range of the invasive lionfish, Pterois volitans. PLoS ONE 10:e0131075

    Article  Google Scholar 

  • Siegel DA, Mitarai S, Costello CJ, Gaines SD, Kendall BE, Warner RR, Winters KB (2008) The stochastic nature of larval connectivity among nearshore marine populations. Proc Natl Acad Sci USA 105:8974–8979

    Article  CAS  Google Scholar 

  • Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123

    Article  CAS  Google Scholar 

  • Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109

    Article  CAS  Google Scholar 

  • Treml EA, Roberts JJ, Chao Y, Halpin PN, Possingham HP, Riginos C (2012) Reproductive output and duration of the pelagic larval stage determine seascape-wide connectivity of marine populations. Integr Comp Biol 52:525–537

    Article  Google Scholar 

  • USGS-NAS (2016) United States Geological Survey-Nonindigenous Aquatic Species database (USGS-NAS). http://nas.er.usgs.gov. Accessed 3 Feb 2016

  • Valdez-Moreno M, Quintal-Lizama C, Gómez-Lozano R, del Carmen García-Rivas M (2012) Monitoring an alien invasion: DNA barcoding and the identification of lionfish and their prey on coral reefs of the Mexican Caribbean. PLoS ONE 7:e36636

    Article  CAS  Google Scholar 

  • Vijay Anand PE, Pillai NGK (2002) Reproductive biology of some common coral reef fishes of the Indian EEZ. J Mar Biol Assoc India 44:122–135

    Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Guy Harvey Research Institute for their support of this research effort. We also thank the two anonymous reviewers who helped strengthen the article with their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew W. Johnston.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: E. Briski.

Reviewed by undisclosed experts.

This article is part of the Topical Collection on Invasive Species.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, M.W., Bernard, A.M. A bank divided: quantifying a spatial and temporal connectivity break between the Campeche Bank and the northeastern Gulf of Mexico. Mar Biol 164, 12 (2017). https://doi.org/10.1007/s00227-016-3038-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3038-0

Keywords

Navigation