Skip to main content

Lesion recovery and the bacterial microbiome in two Caribbean gorgonian corals

Abstract

In the Caribbean, gorgonian corals dominate many coral reefs, while scleractinian coral cover has declined. Gorgonian corals deal with stressors such as lesions caused by wave action, predation, or human activities. In June 2012, artificial wounds were inflicted on branches of the gorgonians Eunicea flexuosa and Pseudoplexaura porosa found at 3–5 m depth on a patch reef (20°52′5.23″N, 86°51′58.92″W) near Puerto Morelos, Mexico. Following healing, injured and uninjured branches were collected to determine the effect of lesions on gorgonian biochemistry, symbiosis, microbiome, and immune response. Lesion recovery in E. flexuosa took twice as long as in P. porosa. In both species, tissues at and surrounding the lesions contained significantly higher sclerite content per dry weight but lower protein per surface area. In and around the lesion area, the density of symbiotic dinoflagellates, Symbiodinium spp., was lower than in uninjured branches, although Symbiodinium photochemical efficiency in tissues surrounding the lesion was not affected. The gorgonian species differed in their bacterial microbiome, but the overall bacterial community and dominant bacterial taxa did not differ between injured and uninjured branches, although the prevalence of some less common bacterial groups did vary. The two species exhibited distinct immune responses, whereby different components of the melanization cascade were activated, and exochitinase was mobilized only in E. flexuosa. While the gorgonian species differed in their lesion recovery response, both healed without signs of disease or colonization by fouling organisms. The capacity to recover successfully from injuries may partly explain why gorgonian corals dominate Caribbean coral reefs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274. doi:10.1038/ismej.2015.39

    Article  CAS  Google Scholar 

  • Alvarez-Filip L, Côté IM, Gill JA, Watkinson AR, Dulvy NK (2011) Region-wide temporal and spatial variation in Caribbean reef architecture: is coral cover the whole story? Glob Change Biol 17:2470–2477. doi:10.1111/j.1365-2486.2010.02385.x

    Article  Google Scholar 

  • Anthony KRN, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Glob Change Biol 17:1798–1808. doi:10.1111/j.1365-2486.2010.02364.x

    Article  Google Scholar 

  • Baker DM, Jordán-Dahlgren E, Angel Maldonado M, Harvell CD (2010) Sea fan corals provide a stable isotope baseline for assessing sewage pollution in the Mexican Caribbean. Limnol Oceanogr 55:2139–2149. doi:10.4319/lo.2010.55.5.2139

    Article  CAS  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1

  • Bayer T, Neave MJ, Alsheikh-Hussain A, Aranda M, Yum LK, Mincer T, Hughen K, Apprill A, Voolstra CR (2013) The microbiome of the Red Sea coral Stylophora pistillata is dominated by tissue-associated Endozoicomonas bacteria. Appl Environ Microbiol 79:4759–4762. doi:10.1128/AEM.00695-13

    Article  CAS  Google Scholar 

  • Birkeland C, Neudecker S (1981) Foraging behavior of two Caribbean chaetodontids: Chaetodon capistratus and C. aculeatus. Copeia 1:169–178. doi:10.2307/1444051

    Article  Google Scholar 

  • Bourne DG, Iida Y, Utchike S, Smith-Keune C (2008) Changes in coral-associated microbial communities during a bleaching event. ISME J 2:350–363. doi:10.1038/ismej.2007.112

    Article  CAS  Google Scholar 

  • Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, Webster N (2013) Coral reef invertebrate microbiomes correlate with the presence of photosymbionts. ISME J 7:1452–1458. doi:10.1038/ismej.2012.172

    Article  CAS  Google Scholar 

  • Burge CA, Douglas NL, Conti-Jerpe I, Weil E, Roberts S, Friedman CS, Harvell CD (2012) Friend or foe: the association of Labyrinthulomycetes with the Caribbean sea fan Gorgonia ventalina. Dis Aquat Org 101:1–12. doi:10.3354/dao02487

    Article  CAS  Google Scholar 

  • Cárdenas A, Rodriguez-R LM, Pizarro V, Cadavid LF, Arévalo-Ferro C (2012) Shifts in bacterial communities of two Caribbean reef-building coral species affected by white plague disease. ISME J 6:502–512. doi:10.1038/ismej.2011.123

    Article  CAS  Google Scholar 

  • Carruthers TJB, van Tussenbroek BI, Dennison WC (2005) Influence of submarine springs and wastewater on nutrient dynamics of Caribbean seagrass meadows. Estuar Coast Shelf Sci 64:191–199. doi:10.1016/j.ecss.2005.01.015

    Article  Google Scholar 

  • Cary LR (1914) Observations upon the growth-rate and oecology of gorgonians. Publ Carnegie Inst Wash 5:81–92

    Google Scholar 

  • Cary LR (1918) A study of respiration in Alcyonaria. Publ Carnegie Inst Wash 12:185–191

    Article  Google Scholar 

  • Cerenius L, Söderhäll K (2004) The prophenoloxidase-activating system in invertebrates. Immunol Rev 198:116–126. doi:10.1111/j.0105-2896.2004.00116.x

    Article  CAS  Google Scholar 

  • Cerenius L, Lee BL, Söderhäll K (2008) The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol 29:263–271. doi:10.1016/j.it.2008.02.009

    Article  CAS  Google Scholar 

  • Chiappone M, Dienes H, Swanson DW, Miller SL (2005) Impacts of lost fishing gear on coral reef sessile invertebrates in the Florida Keys National Marine Sanctuary. Biol Conserv 121:221–230. doi:10.1016/j.biocon.2004.04.023

    Article  Google Scholar 

  • Correa H, Haltli B, Duque C, Kerr R (2013) Bacterial communities of the gorgonian octocoral Pseudopterogorgia elisabethae. Microb Ecol 66:972–985. doi:10.1007/s00248-013-0267-3

    Article  Google Scholar 

  • Couch CS, Mydlarz LD, Harvell CD, Douglas NL (2008) Variation in measures of immunocompetence of sea fan coral, Gorgonia ventalina, in the Florida Keys. Mar Biol 155:281–292. doi:10.1007/s00227-008-1024-x

    Article  CAS  Google Scholar 

  • Daly M, Brugler M, Cartwright P, Collins AG, Dawson M, Fautin DG, France SC, McFadden CS, Opresko DM, Rodriguez E, Romano SL, Stake JL (2007) The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. In: Zhang Z-Q, Shear WA (eds) Linnaeus tercentenary: progress in invertebrate taxonomy. Magnolia Press, Auckland, pp 127–182

    Google Scholar 

  • D’Angelo C, Smith E, Oswald F, Burt J, Tchernov D, Wiedenmann J (2012) Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs 31:1045–1056. doi:10.1007/s00338-012-0926-8

    Article  Google Scholar 

  • Denis V, Debreuil J, De Palmas S, Richard J, Guillaume M, Bruggemann JH (2011) Lesion regeneration capacities in populations of the massive coral Porites lutea at Réunion Island: environmental correlates. Mar Ecol Prog Ser 428:105–117. doi:10.3354/meps09060

    Article  Google Scholar 

  • Denis V, Guillaume MMM, Goutx M, de Palmas S, Debreuil J, Baker AC, Boonstra RK, Bruggemann JH (2013) Fast growth may impair regeneration capacity in the branching coral Acropora muricata. PLoS One 8:e72618. doi:10.1371/journal.pone.0072618.t001

    Article  CAS  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. doi:10.1128/AEM.03006-05

    Article  CAS  Google Scholar 

  • Douglas N, Mullen K, Talmage S, Harvell CD (2007) Exploring the role of chitinolytic enzymes in the sea fan coral, Gorgonia ventalina. Mar Biol 150:1137–1144. doi:10.1007/s00227-006-0444-8

    Article  CAS  Google Scholar 

  • Dove SG, Ortiz JC, Enríquez S, Fine M, Fisher PL, Iglesias-Prieto R, Thornhill DJ, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158

    Article  Google Scholar 

  • Dove SG, Kline DI, Pantos O, Angly FE, Tyson GW, Hoegh-Guldberg O (2013) Future reef decalcification under a business-as-usual CO2 emission scenario. Proc Natl Acad Sci USA 110:15342–15347. doi:10.1073/pnas.1302701110

    Article  CAS  Google Scholar 

  • Drew EA (1972) The biology and physiology of alga-invertebrates symbioses. II. The density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75. doi:10.1016/0022-0981(72)90008-1

    Article  Google Scholar 

  • Duque-Alarcón A, Santiago-Vásquez LZ, Kerr RG (2012) A microbial community analysis of the octocoral Eunicea fusca. Electron J Biotechnol 15:1–9. doi:10.2225/vol15-issue5-fulltext-11

    Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  Google Scholar 

  • Enochs IC, Manzello DP, Wirshing HH, Carlton R, Serafy J (2016) Micro-CT analysis of the Caribbean octocoral Eunicea flexuosa subjected to elevated pCO2. ICES J Mar Sci 73:910–919. doi:10.1093/icesjms/fsv159

    Article  Google Scholar 

  • Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host–habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263. doi:10.1007/s00248-010-9681-y

    Article  Google Scholar 

  • Gabay Y, Fine M, Barkay Z, Benayahu Y (2014) Octocoral tissue provides protection from declining oceanic pH. PLoS One 9:e91553. doi:10.1371/journal.pone.0091553.t001

    Article  CAS  Google Scholar 

  • Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960. doi:10.1126/science.1086050

    Article  CAS  Google Scholar 

  • Gerhart DJ (1983) The chemical systematics of colonial marine animals: an estimated phylogeny of the order Gorgonacea based on terpenoid characters. Biol Bull 164:71–81. doi:10.2307/1541191

    Article  Google Scholar 

  • Gerhart DJ (1990) Fouling and gastropod predation: consequences of grazing for a tropical octocoral. Mar Ecol Prog Ser 62:103–108

    Article  Google Scholar 

  • Gnaiger E, Bitterlich G (1984) Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62:289–298. doi:10.1007/BF00384259

    Article  Google Scholar 

  • Goldberg WM (1973) The ecology of the coral-octocoral communities off the southeast Florida coast: geomorphology, species composition, and zonation. Bull Mar Sci 23:465–488

    Google Scholar 

  • Gómez CE, Paul VJ, Ritson-Williams R, Muehllehner N, Langdon C, Sánchez JA (2015) Responses of the tropical gorgonian coral Eunicea fusca to ocean acidification conditions. Coral Reefs 34:451–460. doi:10.1007/s00338-014-1241-3

    Article  Google Scholar 

  • Goulet TL, Cook CB, Goulet D (2005) Effect of short-term exposure to elevated temperatures and light levels on photosynthesis of different host-symbiont combinations in the Aiptasia pallida/Symbiodinium symbiosis. Limnol Oceanogr 50:1490–1498. doi:10.4319/lo.2005.50.5.1490

    Article  CAS  Google Scholar 

  • Grajales A, Aguilar C, Sánchez JA (2007) Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA): finding the molecular and morphological gap in Caribbean gorgonian corals. BMC Evol Biol 7:90. doi:10.1186/1471-2148-7-90

    Article  CAS  Google Scholar 

  • Gray MA, Stone RP, McLaughlin MR, Kellogg CA (2011) Microbial consortia of gorgonian corals from the Aleutian Islands. FEMS Microbiol Ecol 76:109–120. doi:10.1111/j.1574-6941.2010.01033.x

    Article  CAS  Google Scholar 

  • Hall ER, DeGroot BC, Fine M (2015) Lesion recovery of two scleractinian corals under low pH conditions: implications for restoration efforts. Mar Pollut Bull 100:321–326. doi:10.1016/j.marpolbul.2015.08.030

    Article  CAS  Google Scholar 

  • Henry L-A, Hart M (2005) Regeneration from injury and resource allocation in sponges and corals—a review. Int Rev Hydrobiol 90:125–158. doi:10.1002/iroh.200410759

    Article  Google Scholar 

  • Hewson I, Brown JM, Burge CA, Couch CS, LaBarre BA, Mouchka ME, Naito M, Harvell CD (2011) Description of viral assemblages associated with the Gorgonia ventalina holobiont. Coral Reefs 31:487–491. doi:10.1007/s00338-011-0864-x

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi:10.1126/science.1152509

    Article  CAS  Google Scholar 

  • Holm JB, Heidelberg KB (2016) Microbiomes of Muricea californica and M. fruticosa: comparative analyses of two co-occurring eastern Pacific octocorals. Front Microbiol 7:917. doi:10.3389/fmicb.2016.00917

    Article  Google Scholar 

  • Horwitz R, Fine M (2014) High CO2 detrimentally affects tissue regeneration of Red Sea corals. Coral Reefs 33:819–829. doi:10.1007/s00338-014-1150-5

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50:346–363. doi:10.1002/bimj.200810425

    Article  Google Scholar 

  • Hughes AD, Grottoli AG, Pease TK, Matsui Y (2010) Acquisition and assimilation of carbon in non-bleached and bleached corals. Mar Ecol Prog Ser 420:91–101. doi:10.3354/meps08866

    Article  CAS  Google Scholar 

  • Hunt LR, Smith SM, Downum KR, Mydlarz LD (2012) Microbial regulation in gorgonian corals. Mar Drugs 10:1225–1243. doi:10.3390/md10061225

    Article  CAS  Google Scholar 

  • Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond Ser B 271:1757–1763. doi:10.1098/rspb.2004.2757

    Article  CAS  Google Scholar 

  • Imbs AB, Yakovleva IM, Dautova TN, Bui LH, Jones P (2014) Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry 101:76–82. doi:10.1016/j.phytochem.2014.02.012

    Article  CAS  Google Scholar 

  • Inoue S, Kayanne H, Yamamoto S, Kurihara H (2013) Spatial community shift from hard to soft corals in acidified water. Nat Clim Change 3:683–687. doi:10.1038/nclimate1855

    Article  CAS  Google Scholar 

  • Jackson JBC, Donovan MK, Cramer KL, Lam V (2014) Status and trends of Caribbean coral reefs: 1970–2012. Global Coral Reef Monitoring Network, IUCN, Gland

    Google Scholar 

  • Jackson CR, Stone BWG, Tyler HL (2015) Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture 5:170–187. doi:10.3390/agriculture5020170

    Article  Google Scholar 

  • Jensen P, Harvell CD, Wirtz K, Fenical W (1996) Antimicrobial activity of extracts of Caribbean gorgonian corals. Mar Biol 125:411–419. doi:10.1007/BF00346321

    Article  Google Scholar 

  • Jones RJ, Yellowlees D (1997) Regulation and control of intracellular algae (=zooxanthellae) in hard corals. Philos Trans R Soc Lond Ser B 352:457–468

    Article  Google Scholar 

  • Jordán-Dahlgren E (1989) Gorgonian community structure and reef zonation patterns on Yucatan coral reefs. Bull Mar Sci 45:678–696

    Google Scholar 

  • Kanwisher JW, Wainwright SA (1967) Oxygen balance in some reef corals. Biol Bull 133:378–390. doi:10.2307/1539833

    Article  Google Scholar 

  • Kellogg CA, Lisle JT, Galkiewicz JP (2009) Culture-independent characterization of bacterial communities associated with the cold-water coral Lophelia pertusa in the northeastern Gulf of Mexico. Appl Environ Microbiol 75:2294–2303. doi:10.1128/AEM.02357-08

    Article  CAS  Google Scholar 

  • Kim K, Kim PD, Alker AP, Harvell CD (2000) Chemical resistance of gorgonian corals against fungal infections. Mar Biol 137:393–401. doi:10.1007/s002270000333

    Article  CAS  Google Scholar 

  • Kinzie RA III (1973) Zonation of West Indian gorgonians. Bull Mar Sci 23:93–155

    Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. Am Nat 162:S51–S62. doi:10.1086/378684

    Article  Google Scholar 

  • Kopp C, Domart-Coulon I, Escrig S, Humbel BM, Hignette M, Meibom A (2015) Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. mBio 6:e02299-02214. doi:10.1128/mBio.02299-14

    Article  CAS  Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13

    Article  CAS  Google Scholar 

  • Kurahashi M, Yokota A (2007) Endozoicomonas elysicola gen. nov., sp. nov., a γ-proteobacterium isolated from the sea slug Elysia ornata. Syst Appl Microbiol 30:202–206. doi:10.1016/j.syapm.2006.07.003

    Article  CAS  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Bojesen Christensen RH (2014) lmerTest: tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0

  • La Rivière M, Roumagnac M, Garrabou J, Bally M (2013) Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the northwestern Mediterranean Sea. PLoS One 8:e57385. doi:10.1371/journal.pone.0057385.s001

    Article  CAS  Google Scholar 

  • La Rivière M, Garrabou J, Bally M (2015) Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals. Coral Reefs 34:1087–1098. doi:10.1007/s00338-015-1334-7

    Article  Google Scholar 

  • Lang da Silveira F, Van’t Hof T (1977) Regeneration in the gorgonian Plexaura flexuosa (Cnidaria, Octocorallia). Bijdr Dierkd 47:98–108

    Google Scholar 

  • Lasker HR (1985) Prey preferences and browsing pressure of the butterflyfish Chaetodon capistratus on Caribbean gorgonians. Mar Ecol Prog Ser 21:213–220

    Article  Google Scholar 

  • Lasker HR, Coffroth MA, Fitzgerald L (1988) Foraging patterns of Cyphoma gibbosum on octocorals: the roles of host choice and feeding preference. Biol Bull 174:254–266. doi:10.2307/1541952

    Article  Google Scholar 

  • Leal-Bautista RM, Hernández-Zárate G, Jaime MNA, Cuevas RG, Velázquez Oliman G (2011) Pathogens and pharmaceuticals pollutants as indicators of contamination at the northeastern aquifer of Quintana Roo. Trop Subtrop Agroecosyst 13:211–219

    Google Scholar 

  • Lee OO, Yang J, Bougouffa S, Wang Y, Batang Z, Tian R, Al-Suwailem A, Qian P-Y (2012) Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol 78:7173–7184. doi:10.1128/AEM.01111-12

    Article  CAS  Google Scholar 

  • Lema KA, Willis BL, Bourne DG (2014) Amplicon pyrosequencing reveals spatial and temporal consistency in diazotroph assemblages of the Acropora millepora microbiome. Environ Microbiol 16:3345–3359. doi:10.1111/1462-2920.12366

    Article  CAS  Google Scholar 

  • Lenihan HS, Edmunds PJ (2010) Response of Pocillopora verrucosa to corallivory varies with environmental conditions. Mar Ecol Prog Ser 409:51–63. doi:10.3354/meps08595

    Article  Google Scholar 

  • Lenz EA, Bramanti L, Lasker HR, Edmunds PJ (2015) Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34:1099–1109. doi:10.1007/s00338-015-1315-x

    Article  Google Scholar 

  • Lewis JB, Post EE (1982) Respiration and energetics in West Indian Gorgonacea (Anthozoa, Octocorallia). Comp Biochem Physiol A 71:457–459. doi:10.1016/0300-9629(82)90434-0

    Article  Google Scholar 

  • Mann WT, Beach-Letendre J, Mydlarz LD (2014) Interplay between proteases and protease inhibitors in the sea fan—Aspergillus pathosystem. Mar Biol 161:2213–2220. doi:10.1007/s00227-014-2499-2

    Article  CAS  Google Scholar 

  • McCauley EP, Haltli B, Correa H, Kerr RG (2016) Spatial and temporal investigation of the microbiome of the Caribbean octocoral Erythropodium caribaeorum. FEMS Microbiol Ecol 92:fiw147. doi:10.1093/femsec/fiw147

    Article  Google Scholar 

  • Meesters EH, Pauchli W, Bak RPM (1997) Predicting regeneration of physical damage on a reef-building coral by regeneration capacity and lesion shape. Mar Ecol Prog Ser 146:91–99. doi:10.3354/meps146091

    Article  Google Scholar 

  • Meyer JL, Paul VJ, Teplitski M (2014) Community shifts in the surface microbiomes of the coral Porites astreoides with unusual lesions. PLoS One 9:e100316. doi:10.1371/journal.pone.0100316.s002

    Article  CAS  Google Scholar 

  • Morrow KM, Moss AG, Chadwick NE, Liles MR (2012) Bacterial associates of two Caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol 78:6438–6449. doi:10.1128/AEM.01162-12

    Article  CAS  Google Scholar 

  • Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908. doi:10.1038/ismej.2014.188

    Article  CAS  Google Scholar 

  • Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50:662–674. doi:10.1093/icb/icq061

    Article  Google Scholar 

  • Murdock GR (1978a) Circulation and digestion of food in the gastrovascular system of gorgonian octocorals (Cnidaria; Anthozoa). Bull Mar Sci 28:363–370

    Google Scholar 

  • Murdock GR (1978b) Digestion, assimilation, and transport of food in the gastrovascular cavity of a gorgonian octocoral (Cnidaria; Anthozoa). Bull Mar Sci 28:354–362

    Google Scholar 

  • Mydlarz LD, Harvell CD (2007) Peroxidase activity and inducibility in the sea fan coral exposed to a fungal pathogen. Comp Biochem Physiol A 146:54–62. doi:10.1016/j.cbpa.2006.09.005

    Article  CAS  Google Scholar 

  • Mydlarz LD, Palmer CV (2011) The presence of multiple phenoloxidases in Caribbean reef-building corals. Comp Biochem Physiol A 159:372–378. doi:10.1016/j.cbpa.2011.03.029

    Article  CAS  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC, Harvell CD (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS One 3:e1811. doi:10.1371/journal.pone.0001811

    Article  CAS  Google Scholar 

  • Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR (2016) Diversity and function of prevalent symbiotic marine bacteria in the genus Endozoicomonas. Appl Microbiol Biotechnol. doi:10.1007/s00253-016-7777-0

    Google Scholar 

  • Olano C, Bigger C (2000) Phagocytic activities of the gorgonian coral Swiftia exserta. J Invert Pathol 76:176–184. doi:10.1006/jipa.2000.4974

    Article  CAS  Google Scholar 

  • Oren U, Benayahu Y, Loya Y (1997) Effect of lesion size and shape on regeneration of the Red Sea coral Favia favus. Mar Ecol Prog Ser 146:101–107. doi:10.3354/meps146101

    Article  Google Scholar 

  • Oren U, Benayahu Y, Lubinevsky H, Loya Y (2001) Colony integration during regeneration in the stony coral Favia favus. Ecology 82:802–813. doi:10.1890/0012-9658(2001)082[0802:cidrit]2.0.co;2

    Article  Google Scholar 

  • Palmer CV, McGinty ES, Cummings DJ, Smith SM, Bartels E, Mydlarz LD (2011a) Patterns of coral ecological immunology: variation in the responses of Caribbean corals to elevated temperature and a pathogen elicitor. J Exp Biol 214:4240–4249. doi:10.1242/jeb.061267

    Article  CAS  Google Scholar 

  • Palmer CV, Traylor-Knowles NG, Willis BL, Bythell JC (2011b) Corals use similar immune cells and wound-healing processes as those of higher organisms. PLoS One 6:e23992. doi:10.1371/journal.pone.0023992.g012

    Article  CAS  Google Scholar 

  • Penn K, Wu D, Eisen JA, Ward N (2006) Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl Environ Microbiol 72:1680–1683. doi:10.1128/AEM.72.2.1680-1683.2006

    Article  CAS  Google Scholar 

  • Perkins D, Ciereszko L (1973) The environmental toxicity of crassin acetate using Tetrahymina pyriformis as a model. Hydrobiologia 42:77–84. doi:10.1007/BF00014147

    Article  CAS  Google Scholar 

  • Petes LE, Harvell CD, Peters EC, Webb MAH, Mullen KM (2003) Pathogens compromise reproduction and induce melanization in Caribbean sea fans. Mar Ecol Prog Ser 264:167–171. doi:10.3354/meps264167

    Article  Google Scholar 

  • Pike RE, Haltli B, Kerr RG (2013) Description of Endozoicomonas euniceicola sp. nov. and Endozoicomonas gorgoniicola sp. nov., bacteria isolated from the octocorals Eunicea fusca and Plexaura sp., and an emended description of the genus Endozoicomonas. Int J Syst Evol Microbiol 63:4294–4302. doi:10.1099/ijs.0.051490-0

    Article  CAS  Google Scholar 

  • Porporato EMD, Lo Giudice A, Michaud L, De Domenico E, Spanò N (2013) Diversity and antibacterial activity of the bacterial communities associated with two Mediterranean sea pens, Pennatula phosphorea and Pteroeides spinosum (Anthozoa: Octocorallia). Microb Ecol 66:701–714. doi:10.1007/s00248-013-0260-x

    Article  CAS  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ramsby BD, Shirur KP, Iglesias-Prieto R, Goulet TL (2014) Symbiodinium photosynthesis in Caribbean octocorals. PLoS One 9:e106419. doi:10.1371/journal.pone.0106419

    Article  CAS  Google Scholar 

  • Razin S, Yogev D, Naot Y (1998) Molecular biology and pathogenicity of mycoplasmas. Microbiol Mol Biol Rev 62:1094–1156. doi:10.1007/b113360

    CAS  Google Scholar 

  • Ribes M, Coma R, Gili J-M (1998) Heterotrophic feeding by gorgonian corals with symbiotic zooxanthella. Limnol Oceanogr 43:1170–1179. doi:10.4319/lo.1998.43.6.1170

    Article  Google Scholar 

  • Robertson V, Haltli B, McCauley E, Overy D, Kerr R (2016) Highly variable bacterial communities associated with the octocoral Antillogorgia elisabethae. Microorganisms 4:23. doi:10.3390/microorganisms4030023

    Article  Google Scholar 

  • Roder C, Arif C, Bayer T, Aranda M, Daniels C, Shibl A, Chavanich S, Voolstra CR (2014) Bacterial profiling of white plague disease in a comparative coral species framework. ISME J 8:31–39. doi:10.1038/ismej.2013.127

    Article  CAS  Google Scholar 

  • Roder C, Bayer T, Aranda M, Kruse M, Voolstra CR (2015) Microbiome structure of the fungid coral Ctenactis echinata aligns with environmental differences. Mol Ecol 24:3501–3511. doi:10.1111/mec.13251

    Article  Google Scholar 

  • Rodríguez A (1995) The natural product chemistry of West Indian gorgonian octocorals. Tetrahedron 51:4571–4618. doi:10.1016/0040-4020(95)00216-U

    Article  Google Scholar 

  • Ruesink J, Harvell CD (1990) Specialist predation on the Caribbean gorgonian Plexaurella spp. by Cyphoma signatum (Gastropoda). Mar Ecol Prog Ser 65:265–272

    Article  Google Scholar 

  • Ruiz-Diaz CP, Toledo-Hernández C, Sabat AM, Marcano M (2013) Immune response to a pathogen in corals. J Theor Biol 332:141–148. doi:10.1016/j.jtbi.2013.04.028

    Article  Google Scholar 

  • Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med 2:a012427. doi:10.1101/cshperspect.a012427

    Article  CAS  Google Scholar 

  • Ruzicka R, Colella M, Porter J, Morrison J, Kidney J, Brinkhuis V, Lunz K, Macaulay K, Bartlett L, Meyers M, Colee J (2013) Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar Ecol Prog Ser 489:125–141. doi:10.3354/meps10427

    Article  Google Scholar 

  • Sabine AM, Smith TB, Williams DE, Brandt ME (2015) Environmental conditions influence tissue regeneration rates in scleractinian corals. Mar Pollut Bull 95:253–264. doi:10.1016/j.marpolbul.2015.04.006

    Article  CAS  Google Scholar 

  • Sánchez JA, McFadden CS, France SC, Lasker HR (2003) Molecular phylogenetic analyses of shallow-water Caribbean octocorals. Mar Biol 142:975–987. doi:10.1007/s00227-003-1018-7

    Article  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  Google Scholar 

  • Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310. doi:10.1371/journal.pone.0027310.t004

    Article  CAS  Google Scholar 

  • Shirur KP, Ramsby BD, Iglesias-Prieto R, Goulet TL (2014) Biochemical composition of Caribbean gorgonians: implications for gorgonian—Symbiodinium symbiosis and ecology. J Exp Mar Biol Ecol 461:275–285. doi:10.1016/j.jembe.2014.08.016

    Article  CAS  Google Scholar 

  • Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E, Andersen GL, Medina M (2009) Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J 3:512–521. doi:10.1038/ismej.2008.131

    Article  CAS  Google Scholar 

  • Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS One 5:e9554. doi:10.1371/journal.pone.0009554.g001

    Article  CAS  Google Scholar 

  • Tanaka Y, Grottoli AG, Matsui Y, Suzuki A, Sakai K (2015) Partitioning of nitrogen sources to algal endosymbionts of corals with long-term 15N-labelling and a mixing model. Ecol Model 309–310:163–169. doi:10.1016/j.ecolmodel.2015.04.017

    Article  CAS  Google Scholar 

  • Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176. doi:10.3389/fcimb.2014.00176

    Article  Google Scholar 

  • Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JM, Schmidt GW, Shannon T, Warner ME, Fitt WK (2012) A connection between colony biomass and death in Caribbean reef-building corals. PLoS One 6:e29535. doi:10.1371/journal.pone.0029535

    Article  CAS  Google Scholar 

  • Toledo-Hernández C, Ruiz-Diaz CP (2014) The immune responses of the coral. Invertebr Surviv J 11:319–328

    Google Scholar 

  • Toledo-Hernández C, Zuluaga-Montero A, Bones-González A, Rodríguez JA, Sabat AM, Bayman P (2008) Fungi in healthy and diseased sea fans (Gorgonia ventalina): is Aspergillus sydowii always the pathogen? Coral Reefs 27:707–714. doi:10.1007/s00338-008-0387-2

    Article  Google Scholar 

  • Tracy AM, Koren O, Douglas N, Weil E, Harvell CD (2015) Persistent shifts in Caribbean coral microbiota are linked to the 2010 warm thermal anomaly. Environ Microbiol Rep 7:471–479. doi:10.1111/1758-2229.12274

    Article  Google Scholar 

  • van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH (2015) The coral immune response facilitates protection against microbes during tissue regeneration. Mol Ecol 24:3390–3404. doi:10.1111/mec.13257

    Article  Google Scholar 

  • van Woesik R (1998) Lesion healing on massive Porites spp. corals. Mar Ecol Prog Ser 164:213–220. doi:10.3354/meps164213

    Article  Google Scholar 

  • Vezzulli L, Pezzati E, Huete-Stauffer C, Pruzzo C, Cerrano C (2013) 16SrDNA pyrosequencing of the Mediterranean gorgonian Paramuricea clavata reveals a link among alterations in bacterial holobiont members, anthropogenic influence and disease outbreaks. PLoS One 8:e67745. doi:10.1371/journal.pone.0067745

    Article  CAS  Google Scholar 

  • Villamizar E, Díaz MC, Rützler K, de Nóbrega R (2014) Biodiversity, ecological structure, and change in the sponge community of different geomorphological zones of the barrier fore reef at Carrie Bow Cay, Belize. Mar Ecol 35:425–435. doi:10.1111/maec.12099

    Article  Google Scholar 

  • Voss GL (1956) Protective coloration and habitat of the shrimp Tozeuma carolinensis Kingsley, (Caridea: Hippolytidae). Bull Mar Sci 6:359–363

    Google Scholar 

  • Vreeland HV, Lasker HR (1989) Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. J Exp Mar Biol Ecol 129:265–277. doi:10.1016/0022-0981(89)90108-1

    Article  Google Scholar 

  • Wahle CM (1980) Detection, pursuit, and overgrowth of tropical gorgonians by milleporid hydrocorals: perseus and medusa revisited. Science 209:689–691. doi:10.1126/science.209.4457.689

    Article  CAS  Google Scholar 

  • Wahle CM (1983) Regeneration of injuries among Jamaican gorgonians: the roles of colony physiology and environment. Biol Bull 165:778–790. doi:10.2307/1541478

    Article  Google Scholar 

  • Wahle CM (1985) Habitat-related patterns of injury and mortality among Jamaican gorgonians. Bull Mar Sci 37:905–927

    Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. doi:10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  Google Scholar 

  • Westfall PH (1997) Multiple testing of general contrasts using logical constraints and correlations. J Am Stat Assoc 92:299–306. doi:10.1080/01621459.1997.10473627

    Article  Google Scholar 

  • Wirshing HH, Messing CG, Douady CJ, Reed J, Stanhope MJ, Shivji MS (2005) Molecular evidence for multiple lineages in the gorgonian family Plexauridae (Anthozoa: Octocorallia). Mar Biol 147:497–508. doi:10.1007/s00227-005-1592-y

    Article  CAS  Google Scholar 

  • Yang C-S, Chen M-H, Arun AB, Chen CA, Wang J-T, Chen W-M (2010) Endozoicomonas montiporae sp. nov., isolated from the encrusting pore coral Montipora aequituberculata. Int J Syst Evol Microbiol 60:1158–1162. doi:10.1099/ijs.0.014357-0

    Article  CAS  Google Scholar 

  • Yue JC, Clayton MK (2005) A similarity measure based on species proportions. Commun Stat Theory Methods 34:2123–2131. doi:10.1080/STA-200066418

    Article  Google Scholar 

  • Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR (2016) Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. Mar Pollut Bull 105:629–640. doi:10.1016/j.marpolbul.2015.12.045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the staff, students, and Roberto Iglesias-Prieto at the Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México for their assistance, and B. Ramsby, H. Pearson and M. McCauley for help in the field. We appreciate the help of M. Slattery, S. Ankisetty and W. Mann’s with the biochemical assays, J. Hoeksema and S. Brewer for their statistical guidance, and T. LaJeunesse with Symbiodinium naming. Work performed through the UMMC Molecular and Genomics Facility was partially supported by the National Institute of General Medical Sciences of the National Institutes of Health, including Mississippi INBRE (P20GM103476), Center for Psychiatric Neuroscience (CPN)-COBRE (P30GM103328) and Obesity, Cardiorenal and Metabolic Diseases-COBRE (P20GM104357). The FlowCAM particle analyzer used was funded by the National Science Foundation (NSF) MRI Grant No. 1126379. Funding for this work was provided by the Graduate Student Council and Department of Biology at the University of Mississippi to K.P.S. and the NSF under Grant No. IOS 0747205 and REU supplement to T.L.G. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar L. Goulet.

Ethics declarations

Conflict of interest

The authors have no conflict of interest. Gorgonian corals were sampled with a collection permit.

Additional information

Responsible Editor: L. D. Mydlarz.

Reviewed by Undisclosed experts.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shirur, K.P., Jackson, C.R. & Goulet, T.L. Lesion recovery and the bacterial microbiome in two Caribbean gorgonian corals. Mar Biol 163, 238 (2016). https://doi.org/10.1007/s00227-016-3008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3008-6

Keywords

  • Bacterial Community
  • Lesion Site
  • Scleractinian Coral
  • Melanin Content
  • Symbiodinium Cell