Skip to main content

Advertisement

Log in

Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks (Southern Ocean)

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Fatty acid analysis was used to study the trophic ecology of 10 demersal fish species in the South Georgia region. Principal component analysis grouped the species into three general clusters, revealing resource partitioning between species. Two groups were characterised by large proportions of either monounsaturated or polyunsaturated fatty acids, separating species according to their predominant feeding habitat. The third group showed fatty acid signatures overlapping with either or both of the previous two groups, suggesting a more opportunistic feeding behaviour for these species. Intraspecific comparisons furthermore revealed dietary variability with size, year and geographical location in several species. Mackerel icefish (Champsocephalus gunnari) in particular showed inter-annual differences in muscle lipid concentrations closely linked to prey availability with low lipid contents found in years of low krill (Euphausia superba) abundance. Despite the intraspecific differences the majority of species could be easily distinguished from each other, which indicates the utility of this method in the dietary analysis of higher predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Atkinson A, Siegel V, Pakhomov EA, Rothery P, Loeb V, Ross RM, Quetin LB, Schmidt K, Fretwell P, Murphy EJ, Tarling GA, Fleming AH (2008) Oceanic circumpolar habitats of Antarctic krill. Mar Ecol Prog Ser 362:1–23

    Article  CAS  Google Scholar 

  • Baker ADC, Clarke MR, Harris MJ (1973) The N. I. 0. combination net (RMT 1 + 8) and further developments of rectangular midwater trawls. J Mar Biol Assess UK 53:167–184

    Article  Google Scholar 

  • Barlow KE, Croxall JP (2002) Seasonal and interannual variation in foraging range and habitat of macaroni penguins Eudyptes chrysolophus at South Georgia. Mar Ecol Prog Ser 232:291–304

    Article  Google Scholar 

  • Casaux RJ, Mazzotta AS, Barreraoro ER (1990) Seasonal aspects of the biology and diet of nearshore nototheniid fish at Potter Cove, South Shetland Islands, Antarctica. Polar Biol 11:63–72

    Article  Google Scholar 

  • Christie WW (1982) Lipid analysis. Pergamon Press, Oxford

    Google Scholar 

  • Clarke A, Doherty N, Devries AL, Eastman JT (1984) Lipid-content and composition of 3 species of Antarctic fish in relation to buoyancy. Polar Biol 3:77–83

    Article  CAS  Google Scholar 

  • Cohen DM, Inada T, Iwamoto T, Scialabba N (1990) FAO Species Catalogue Vol 10 Gadiform fishes of the world (Order Gadiformes). An annotated and illustrated catalogue of cods, hakes, grenadiers and other gadiform fishes known to date. FAO Fish Synop 10(125):442

    Google Scholar 

  • Collins MA, Ross KA, Belchier M, Reid K (2007) Distribution and diet of juvenile patagonian toothfish on the South Georgia and Shag Rocks shelves (Southern Ocean). Mar Biol 152:135–147

    Article  Google Scholar 

  • Collins MA, Shreeve RS, Fielding S, Thurston MH (2008) Distribution, growth, diet and foraging behaviour of the yellow-fin notothen Patagonotothen guntheri (Norman) on the Shag Rocks shelf (Southern Ocean). J Fish Biol 72:271–286

    Article  Google Scholar 

  • Collins MA, Brickle P, Brown J, Belchier M (2010) The Patagonian Toothfish: Biology, ecology and fishery. Adv Mar Biol 58:227–300

    Article  Google Scholar 

  • Everson I, Parkes G, Kock KH, Boyd IL (1999) Variation in standing stock of the mackerel icefish Champsocephalus gunnari at South Georgia. J Appl Ecol 36:591–603

    Article  Google Scholar 

  • Fischer W, Hureau J-C (eds) (1985) FAO species identification sheets for fishery purposes, Southern Ocean, CCAMLR Convention Area, Fishing Areas 48, 58, and 88. Food and Agriculture Organization, Rome

    Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  Google Scholar 

  • Friedrich C, Hagen W (1994) Lipid contents of 5 species of notothenioid fish from high-Antarctic waters and ecological implications. Polar Biol 14:359–369

    Article  Google Scholar 

  • Gon O, Heemstra PC (1990) Fishes of the Southern Ocean. Institute of Ichthyology, Grahamstown

    Google Scholar 

  • Graeve M, Hagen W, Kattner G (1994) Herbivorous or omnivorous? On the significance of lipid compositions as trophic markers in Antarctic copepods. Deep Sea Res I 41:915–924

    Article  Google Scholar 

  • Graeve M, Kattner G, Piepenburg D (1997) Lipids in Arctic benthos: does the fatty acid and alcohol composition reflect feeding and trophic interactions? Polar Biol 18:53–61

    Article  Google Scholar 

  • Graeve M, Kattner G, Wiencke C, Karsten U (2002) Fatty acid composition of Arctic and Antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    Article  CAS  Google Scholar 

  • Hagen W, Kattner G (1998) Lipid metabolism of the Antarctic euphausiid Thysanoessa macrura and its ecological implications. Limnol Oceanogr 43:1894–1901

    CAS  Google Scholar 

  • Hagen W, Kattner G, Friedrich C (2000) The lipid compositions of high-Antarctic notothenioid fish species with different life strategies. Polar Biol 23:785–791

    Article  Google Scholar 

  • Hagen W, Kattner G, Terbruggen A, Van Vleet ES (2001) Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Mar Biol 139:95–104

    Article  CAS  Google Scholar 

  • Hazel JR, Sidell BD (2004) The substrate specificity of hormone-sensitive lipase from adipose tissue of the Antarctic fish Trematomus newnesi. J Exp Biol 207:897–903

    Article  CAS  Google Scholar 

  • Iken K, Barrera-Oro ER, Quartino ML, Casaux RJ, Brey T (1997) Grazing by the Antarctic fish Notothenia coriiceps: evidence for selective feeding on macroalgae. Antarc Sci 9:386–391

    Article  Google Scholar 

  • Kattner G, Hagen W (1995) Polar herbivorous copepods—different pathways in lipid biosynthesis. ICES J Mar Sci 52:329–335

    Article  Google Scholar 

  • Kock KH (1992) Antarctic fish and fisheries. Cambridge University Press, Cambridge

    Google Scholar 

  • Kock KH (2005) Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I. Polar Biol 28:862–895

    Article  Google Scholar 

  • Kock KH, Wilhelms S, Everson I, Groger J (1994) Variations in the diet composition and feeding intensity of mackerel icefish Champsocephalus gunnari at South Georgia (Antarctic). Mar Ecol Prog Ser 108:43–57

    Article  Google Scholar 

  • Kock KH, Reid K, Croxall JP, Nicol S (2007) Fisheries in the Southern Ocean: an ecosystem approach. Phil Trans R Soc B 363:2333–2349

    Article  Google Scholar 

  • Kompowski A (1993) Food and feeding behaviour of eel-cod Muraenolepis sp., (Pisces, Gadiformes, Muraenolepididae) from the region of South Georgia. Acta Ichthyol Piscat 23:59–68

    Google Scholar 

  • Laptikhovsky VV (2004) A comparative study of diet in three sympatric populations of Patagonotothen species (Pisces: Nototheniidae). Polar Biol 27:202–205

    Article  Google Scholar 

  • Lund ED, Sidell BD (1992) Neutral lipid compositions of Antarctic fish tissues may reflect use of fatty acyl substrates by catabolic systems. Mar Biol 112:377–382

    Article  CAS  Google Scholar 

  • Main CE, Collins MA (2011) Diet of the starry skate Amblyraja georgiana (Rajidae) at South Georgia. Pol Biol 34:389–396

    Article  Google Scholar 

  • Main CE, Collins MA, Mitchell R, Belchier M (2009) Identifying patterns in the diet of mackerel icefish (Champsocephalus gunnari) at South Georgia using bootstrapped confidence intervals of a dietary index. Polar Biol 32:569–581

    Article  Google Scholar 

  • Mauchline J, Gordon JDM (1986) Foraging strategies of deep-sea fish. Mar Ecol Prog Ser 27:227–238

    Article  Google Scholar 

  • McKenna JE (1991) Trophic relationships within the Antarctic demersal fish community of South Georgia Island. Fish B-NOAA 89:643–654

    Google Scholar 

  • Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32. doi:10.1029/2005GL024042

  • Moreno CA, Osorio HH (1977) Bathymetric food habit changes in the Antarctic fish, Notothenia gibberifrons Lönnberg (Pisces:Nototheniidae). Hydrobiologia 55:139–144

    Article  Google Scholar 

  • Nelson MM, Phleger CF, Mooney BD, Nichols PD (2000) Lipids of gelatinous Antarctic zooplankton: Cnidaria and Ctenophora. Lipids 35:551–559

    Article  CAS  Google Scholar 

  • Nelson MM, Mooney BD, Nichols PD, Phleger CF (2001) Lipids of Antarctic Ocean amphipods: food chain interactions and the occurrence of novel biomarkers. Mar Chem 73:53–64

    Article  CAS  Google Scholar 

  • Nichols DS, Williams D, Dunstan GA, Nichols PD, Volkman JK (1994) Fatty acid composition of Antarctic and temperate fish of commercial interest. Comp Biochem Physiol B 107:357–363

    Article  Google Scholar 

  • Pakhomov EA, Perissinotto R (1996) Trophodynamics of the hyperiid amphipod Themisto gaudichaudii in the South Georgia region during late austral summer. Mar Ecol Prog Ser 134:91–100

    Article  Google Scholar 

  • Pakhomov EA, Bushula T, Kaehler S, Watkins BP, Leslie RW (2006) Structure and distribution of the slope fish community in the vicinity of the sub-Antarctic Prince Edward Archipelago. J Fish Biol 68:1834–1866

    Article  Google Scholar 

  • Permitin YY, Tarverdiyeva MI (1972) The food of some Antarctic fish in the South Georgia area. J Ichthyol 12:104–114

    Google Scholar 

  • Phleger CF, Nichols PD, Virtue P (1998) Lipids and trophodynamics of Antarctic zooplankton. Comp Biochem Physiol B 120:311–323

    Article  Google Scholar 

  • Pilling GM, Purves MG, Daw TM, Agnew DA, Xavier JC (2001) The stomach contents of Patagonian toothfish around South Georgia (South Atlantic). J Fish Biol 59:1370–1384

    Article  Google Scholar 

  • Pond DW, Tarling GA (2011) Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol Oceanogr 56:1310–1318

    Article  CAS  Google Scholar 

  • Pond DW, Tarling GA, Ward P, Mayor D (2012) Wax ester composition influences the diapause patterns in the copepod, Calanoides acutus. Deep-Sea Res II 59–60:93–104

    Article  Google Scholar 

  • Reid K (2002) Growth rates of Antarctic fur seals as indices of environmental conditions. Mar Mammal Sci 18:469–482

    Article  Google Scholar 

  • Reid WDK, Clarke S, Collins MA, Belchier M (2007) Distribution and ecology of Chaenocephalus aceratus (Channichthyidae) around South Georgia and Shag Rocks (Southern Ocean). Polar Biol 30:1523–1533

    Article  Google Scholar 

  • Reinhardt SB, Van Vleet ES (1986) Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Mar Biol 91:149–159

    Article  CAS  Google Scholar 

  • Sargent JR, Parkes JR, Mueller-Harvey I, Henderson RJ (1987) Lipid biomarkers in marine ecology. In: Sleigh MA (ed) Microbes in the sea. Ellis Horwood Ltd., Chichester, pp 119–138

    Google Scholar 

  • Schmidt K, Atkinson A, Petzke KJ, Voss M, Pond DW (2006) Protozoans as a food source for Antarctic krill, Euphausia superba: Complementary insights from stomach content, fatty acids, and stable isotopes. Limnol Oceanogr 51:2409–2427

    Article  CAS  Google Scholar 

  • Schmidt K, Atkinson A, Steigenberger S, Fielding S, Lindsay MCM, Pond DW, Tarling GA, Klevjer TA, Allen CS, Nicol S, Achterberg EP (2011) Seabed foraging by Antarctic krill: Implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnol Oceanogr 56:1411–1428

    Article  CAS  Google Scholar 

  • Sidell BD, Crockett EL, Driedzic WR (1995) Antarctic fish tissues preferentially catabolize monoenic fatty acids. J Exp Zool 271:73–81

    Article  CAS  Google Scholar 

  • Staniland IJ, Pond DW (2005) Investigating the use of milk fatty acids to detect dietary changes: a comparison with faecal analysis in Antarctic fur seals. Mar Ecol Prog Ser 294:283–294

    Article  CAS  Google Scholar 

  • Stowasser G, McAllen R, Pierce GJ, Collins MA, Moffat CF, Priede IG, Pond DW (2009) Trophic position of deep-sea fish-Assessment through fatty acid and stable isotope analyses. Deep Sea Res I 56:812–826

    Article  CAS  Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn and Bacon, Boston

    Google Scholar 

  • Tarverdiyeva MI (1972) Daily food consumption and feeding pattern of the South Georgian cod (Notothenia rossii marmorata Fischer) and the Patagonian toothfish (Dissostichus eleginoides Smitt) (family Nototheniidae) in the South Georgia area. J Ichthyol 12:684–692

    Google Scholar 

  • Trathan PN, Forcada J, Murphy EJ (2007) Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability. Phil T Roy Soci B 362:2351–2365

    Article  CAS  Google Scholar 

  • Venables HJ, Meredith MP, Atkinson A, Ward P (2012) Fronts and habitat zones in the Scotia Sea. Deep-Sea Res II(59–60):14–24

    Google Scholar 

Download references

Acknowledgments

The authors thank the captain, crew and scientists on board RRS James Clark Ross during cruise JR 100 and on FPV Dorada during the South Georgia groundfish surveys in 2003, 2004 and 2006 (funded by the Government of South Georgia and the South Sandwich Islands). Thanks also to Peter Rothery for advice on statistical analysis and Peter Fretwell for creating the map in Fig. 1. This is a contribution to the Ecosystems Science programme at the British Antarctic Survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Stowasser.

Additional information

Communicated by M. A. Peck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stowasser, G., Pond, D.W. & Collins, M.A. Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks (Southern Ocean). Mar Biol 159, 2299–2310 (2012). https://doi.org/10.1007/s00227-012-2015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2015-5

Keywords

Navigation