Skip to main content
Log in

Specific organic matrix characteristics in skeletons of Corallium species

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Corallium species have ecological, cultural and commercial importance and thus require tools to assist with their identification for both management and trade. The organic matrix (OM) of the skeletons of four Corallium species (C. rubrum, C. konojoi, C. secundum and C. elatius) was examined to provide insight into the biomineralization process and to develop a new tool of identification. The pattern of OM and the set of soluble organic matrix proteins (SOM) in the skeletons were examined by gel electrophoresis. Staining of cross-sections of skeletons showed a common cyclic, concentric pattern of OM during growth. Differences in molecular weight and isoelectric point were observed for proteins in the SOM in different Corallium species but not among different populations of Corallium rubrum. Immunolabeling with antibodies against the SOM of C. rubrum showed labeling of the OM of the three other Corallium species suggesting the presence of common epitopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbiati M, Santangelo G, Novelli S (1993) Genetic variation within and between two Tyrrhenian populations of the Mediterranean alcyonarian Corallium rubrum. Mar Ecol Prog Ser 95:245–250

    Article  Google Scholar 

  • Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970. doi:10.1002/adma.200300381

    Article  CAS  Google Scholar 

  • Allemand D (1993) The biology and skeletogenesis of the Mediterranean Red Coral: a review. Precious Corals Octocoral Res 2:19–39

    Google Scholar 

  • Allemand D, Bénazet-Tambutté S (1996) Dynamics of calcification in the mediterranean red coral, Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J Exp Zool 276:270–278. doi:10.1002/(sici)1097-010x(19961101)276:4<270:aid-jez4>3.0.co;2-l

    Article  Google Scholar 

  • Allemand D, Grillo M-C (1992) Biocalcification mechanism in gorgonians: 45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum. J Exp Zool 262:237–246. doi:10.1002/jez.1402620302

    Article  CAS  Google Scholar 

  • Allemand D, Cuif J-P, Watabe N, Oishi M, Kawaguchi T (1994) The organic matrix of skeletal structures of the Mediterranean red coral, Corallium rubrum. Bulletin de l’Institut Océanographique de Monaco 14:129–139

    Google Scholar 

  • Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 119–150. doi:10.1007/978-94-007-0114-4_9

    Chapter  Google Scholar 

  • Aurelle D, Ledoux JB, Rocher C, Borsa P, Chenuil A, Féral JP (2011) Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian. Genetica. doi:10.1007/s10709-011-9589-6

  • Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58

    Article  CAS  Google Scholar 

  • Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi:10.1002/elps.1150080203

    Article  CAS  Google Scholar 

  • Borelli G, Mayer-Gostan N, Merle PL, Pontual H, Boeuf G, Allemand D, Payan P (2003) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcif Tissue Int 72:717–725. doi:10.1007/s00223-001-2115-6

    Article  CAS  Google Scholar 

  • Bruckner AW (2009) Rate and extent of decline in Corallium (pink and red coral) populations: existing data meet the requirements for a CITES Appendix II listing. Mar Ecol Prog Ser 397:319–332. doi:10.3354/meps08110

    Article  Google Scholar 

  • Bussoletti E, Cottingham D, Bruckner A, Roberts G, Sandulli R (2010) Proceedings of the international workshop on red coral science, management, and trade: lessons from the Mediterranean. NOAA technical memorandum CRCP-13, Silver Spring, MD

  • Calderon I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197

    Article  CAS  Google Scholar 

  • CITES (2008) Convention on international trade in endangered species of wild fauna and flora. Notification to the parties. Appendix III. No 2008/027, Geneva

  • Coma R, Ribes M, Gili J-M, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453. doi:10.1016/s0169-5347(00)01970-4

    Article  Google Scholar 

  • Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258. doi:10.1002/jez.1402480302

    Article  CAS  Google Scholar 

  • Costantini F, Fauvelot C, Abbiati M (2007a) Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar Ecol Prog Ser 340:109–119

    Article  CAS  Google Scholar 

  • Costantini F, Fauvelot C, Abbiati M (2007b) Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. Mol Ecol 16:5168–5182

    Article  CAS  Google Scholar 

  • Costantini F, Taviani M, Remia A, Pintus E, Schembri PJ, Abbiati M (2010) Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar Ecol 31:261–269. doi:10.1111/j.1439-0485.2009.00333.x

    Article  Google Scholar 

  • Cui F-Z, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng 57:1–27. doi:10.1016/j.mser.2007.04.001

    Article  Google Scholar 

  • Cvejic J, Tambutté S, Lotto S, Mikov M, Slacanin I, Allemand D (2007) Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection. Mar Biol 152:855–862. doi:10.1007/s00227-007-0738-5

    Article  CAS  Google Scholar 

  • Dana J-D (1846) Structure and classification of zoophytes. Lea and Blanchard, Philadelphia

    Google Scholar 

  • Dauphin Y (2006) Mineralizing matrices in the skeletal axes of two Corallium species (Alcyonacea). Comp Biochem Physiol A 145:54–64. doi:10.1016/j.cbpa.2006.04.029

    Article  Google Scholar 

  • Debreuil J, Tambutté S, Zoccola D, Segonds N, Techer N, Allemand D, Tambutté É (2011) Comparative analysis of the soluble organic matrix of axial skeleton and sclerites of Corallium rubrum: insights for biomineralization. Comp Biochem Physiol B 159:40–48

    Article  CAS  Google Scholar 

  • del Gaudio D, Fortunato G, Borriello M, Gili J, Buono P, Calcagno G, Salvatore F, Sacchetti L (2004) Genetic typing of Corallium rubrum. Mar Biotech 6:511–515. doi:10.1007/s10126-004-3001-9

    Article  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by Mollusk shell macromolecules. Science 271:67–69. doi:10.1126/science.271.5245.67

    Article  Google Scholar 

  • Fritsch E, Karampelas S (2008) Comment on: determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection (Cvejic et al. Mar Biol 152:855–862, 2007). Mar Biol 154:929–930. doi:10.1007/s00227-008-0964-5

    Google Scholar 

  • Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 304:11–17. doi:10.1016/s0006-291x(03)00527-8

    Article  CAS  Google Scholar 

  • Gallmetzer I, Haselmair A, Velimirov B (2010) Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci 90:1–10

    Article  Google Scholar 

  • Goldberg WM (1988) Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Histochem Cell Biol 89:163–170. doi:10.1007/bf00489919

    Article  CAS  Google Scholar 

  • Gotliv B-A, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4:522–529. doi:10.1002/cbic.200200548

    Article  CAS  Google Scholar 

  • Grillo MC, Goldberg WM, Allemand D (1993) Skeleton and sclerite formation in the precious red coral Corallium rubrum. Mar Biol 117:119–128. doi:10.1007/bf00346433

    Article  Google Scholar 

  • Houlbrèque F, Tambutté É, Richard C, Ferrier-Pagès C (2004) Importance of the micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Kirschvink JL, Hagadorn JW (2000) A grand unified theory of biomineralization. In: Bäuerlein E (ed) The biomineralization of nano-and micro-structures. Wiley-VCH, Verlag GmbH, Weinheim, pp 139–150

    Google Scholar 

  • Kishinouye K (1903) Preliminary note on the Coralliidae of Japan. Zoologischer Anzeiger 26:623–662

    Google Scholar 

  • Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356. doi:10.2113/0540329

    Article  CAS  Google Scholar 

  • Lacaze-Duthiers H (1864) Histoire naturelle du corail. J.B. Bailière et Fils, Paris

    Google Scholar 

  • Ledoux JB, Garrabou J, Bianchimani O, Drap P, Féral JP, Aurelle D (2010a) Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol 19(19):4204–4216. doi:10.1111/j.1365-294X.2010.04814.x

    Article  Google Scholar 

  • Ledoux JB, Mokhtar-Jamaï K, Roby C, Féral JP, Garrabou J, Aurelle D (2010b) Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus, 1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol Ecol 19:675–690. doi:10.1111/j.1365-294X.2009.04516.x

    Article  CAS  Google Scholar 

  • Linnaeus C (1758) Systema naturae. Editio decima, reformata. Impensis Direct. Laurentii Salvii, Holmiae

    Google Scholar 

  • Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University, New York

    Google Scholar 

  • Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276

    Article  CAS  Google Scholar 

  • Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23:423–432. doi:10.1007/s00338-004-0398-6

    Article  Google Scholar 

  • McFadden CS, France SC, Sánchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527. doi:10.1016/j.ympev.2006.06.010

    Article  CAS  Google Scholar 

  • McFadden CS, Benayahu Y, Pante E, Thoma JN, Nevarez PA, France SC (2011) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol Resour 11:19–31. doi:10.1111/j.1755-0998.2010.02875.x

    Article  CAS  Google Scholar 

  • Morel J-P, Rondi-Costanzo C, Ugolini D (1996) Corallo di ieri, corallo di oggi. Convegno del Centro Universitario Europeo per i Beni Culturali (CUEBC) di Ravello, Edipuglia, Bari, 2000

  • Puverel S, Tambutté E, Pereira-Mouriès L, Zoccola D, Allemand D, Tambutté S (2005) Soluble organic matrix of two scleractinian corals: partial and comparative analysis. Comp Biochem Physiol B 141:480–487. doi:10.1016/j.cbpc.2005.05.013

    Article  CAS  Google Scholar 

  • Rahman MA, Isa Y (2005) Characterization of proteins from the matrix of spicules from the alcyonarian, Lobophytum crassum. J Exp Mar Biol Ecol 321:71–82. doi:10.1016/j.jembe.2005.01.012

    Article  CAS  Google Scholar 

  • Rahman MA, Isa Y, Uehara T (2006) Studies on two closely related species of Octocorallians: biochemical and molecular characteristics of the organic matrices of endoskeletal sclerites. Mar Biotech 8:415–424. doi:10.1007/s10126-005-6150-6

    Article  CAS  Google Scholar 

  • Ridley S (1882) On the arrangement of the Coralliidae, with descriptions of new or rare species. Proc Zool Soc London 1882:221–233

    Google Scholar 

  • Santangelo G, Abbiati M (2001) Red coral: conservation and management of an over-exploited Mediterranean species. Aquat Conserv Mar Freshw Ecosyst 11:253–259. doi:10.1002/aqc.451

    Article  Google Scholar 

  • Santangelo G, Maggi E, Bramanti L, Bongiorni L (2004) Demography of the over-exploited Mediterranean red coral (Corallium rubrum L. 1758). Sci Mar 68:199–204

    Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, New York

    Google Scholar 

  • Tambutté S, Tambutté É, Zoccola D, Allemand D (2007a) Organic matrix and biomineralization of scleractinian corals. In: Baeuerlein E (ed) Handbook of biomineralization. The biology of biominerals structure formation. Wiley-VCH, Weinheim, Germany, pp 243–259

    Google Scholar 

  • Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83. doi:10.1007/s00227-006-0452-8

    Article  Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol. doi:10.1016/j.jembe.2011.07.026

  • Tsounis G, Rossi S, Gili J-M, Arntz W (2007) Red coral fishery at the Costa Brava (NW Mediterranean): case study of an overharvested precious coral. Ecosystems 10:975–986. doi:10.1007/s10021-007-9072-5

    Article  Google Scholar 

  • Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili J-M (2010) The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev 48:161–212

    Article  Google Scholar 

  • Uda K, Komeda Y, Koyama H, Koga K, Fujita T, Iwasaki N, Suzuki T (2011) Complete mitochondrial genomes of two Japanese precious corals, ParaCorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement. Gene 476:27–37. doi:10.1016/j.gene.2011.01.019

    Article  CAS  Google Scholar 

  • Vargas S, Breedy O, Siles F, Guzman HM (2010) How many kinds of sclerite? Towards a morphometric classification of gorgoniid microskeletal components. Micron 41:158–164. doi:10.1016/j.micron.2009.08.009

    Article  Google Scholar 

  • Vielzeuf D, Garrabou J, Baronnet A, Grauby O, Marschal C (2008) Nano to macroscale biomineral architecture of red coral (Corallium rubrum). Am Mineral 93:1799–1815. doi:10.2138/am.2008.2923

    Article  CAS  Google Scholar 

  • Vielzeuf D, Floquet N, Chatain D, Bonnete F, Ferry D, Garrabou J, Stolper EM (2010) Multilevel modular mesocrystalline organization in red coral. Am Mineral 95:242–248. doi:10.2138/am.2010.3268

    Article  CAS  Google Scholar 

  • Weinberg S (1976) Revision of the common octocorallia of the Mediterranean circalittoral. I Gorgonacea. Beaufortia 24:63–104

    Google Scholar 

  • Weiner S (1984) Organization of organic matrix components in mineralized tissues. Am Zool 24:945–951. doi:10.1093/icb/24.4.945

    CAS  Google Scholar 

  • Weiner S, Traub W, Lowenstam MA (1983) Organic matrix in calcified exoskeletons. In: Westbroeck P, De Jong EW (eds) Biomineralization and biological metal accumulation. Reidel Publishing Company, Dordrecht, Holland, pp 205–224

    Chapter  Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Wheeler AP, George JW, Evans CA (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212:1397–1398

    Article  CAS  Google Scholar 

  • Williams GC (1997) Preliminary assessment of the phylogeny of Pennatulacea (Anthozoa: Octocorallia), with a reevaluation of Ediacaran frond-like fossils, and a synopsis of the history of evolutionary thought regarding sea pens. In: Proceedings of the 6th international conference coelenterate biology 1995, pp 497–509

  • Zabala M, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or why corals do not exist in the Mediterranean. Sci Mar 53:3–17

    Google Scholar 

Download references

Acknowledgments

This study was conducted, as part of the Centre Scientifique de Monaco research program, supported by the Government of the Principality of Monaco. Julien Debreuil was funded by the Ministère Français de l’Enseignement Supérieur et de la Recherche (Ecole Doctorale Diversité du Vivant No. 392, Université Pierre et Marie Curie). The authors thank F. Ruggiero for helpful assistance in coral sampling and the RAMOGE Agreement for the Alain Vatrican Award. The authors thank A. Venn for proofreading the English in the manuscript and three anonymous reviewers for their comments that have helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tambutté.

Additional information

Communicated by J. P. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debreuil, J., Tambutté, S., Zoccola, D. et al. Specific organic matrix characteristics in skeletons of Corallium species. Mar Biol 158, 2765–2774 (2011). https://doi.org/10.1007/s00227-011-1775-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-011-1775-7

Keywords

Navigation