Marine Biology

, Volume 158, Issue 12, pp 2765–2774 | Cite as

Specific organic matrix characteristics in skeletons of Corallium species

  • J. Debreuil
  • S. TambuttéEmail author
  • D. Zoccola
  • N. Segonds
  • N. Techer
  • C. Marschal
  • D. Allemand
  • S. Kosuge
  • É. Tambutté
Original Paper


Corallium species have ecological, cultural and commercial importance and thus require tools to assist with their identification for both management and trade. The organic matrix (OM) of the skeletons of four Corallium species (C. rubrum, C. konojoi, C. secundum and C. elatius) was examined to provide insight into the biomineralization process and to develop a new tool of identification. The pattern of OM and the set of soluble organic matrix proteins (SOM) in the skeletons were examined by gel electrophoresis. Staining of cross-sections of skeletons showed a common cyclic, concentric pattern of OM during growth. Differences in molecular weight and isoelectric point were observed for proteins in the SOM in different Corallium species but not among different populations of Corallium rubrum. Immunolabeling with antibodies against the SOM of C. rubrum showed labeling of the OM of the three other Corallium species suggesting the presence of common epitopes.


Growth Ring Organic Matrix Apparent Molecular Weight Axial Skeleton Toluidine Blue Staining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was conducted, as part of the Centre Scientifique de Monaco research program, supported by the Government of the Principality of Monaco. Julien Debreuil was funded by the Ministère Français de l’Enseignement Supérieur et de la Recherche (Ecole Doctorale Diversité du Vivant No. 392, Université Pierre et Marie Curie). The authors thank F. Ruggiero for helpful assistance in coral sampling and the RAMOGE Agreement for the Alain Vatrican Award. The authors thank A. Venn for proofreading the English in the manuscript and three anonymous reviewers for their comments that have helped improve the manuscript.

Supplementary material

227_2011_1775_MOESM1_ESM.doc (488 kb)
Supplementary material 1 (DOC 487 kb)


  1. Abbiati M, Santangelo G, Novelli S (1993) Genetic variation within and between two Tyrrhenian populations of the Mediterranean alcyonarian Corallium rubrum. Mar Ecol Prog Ser 95:245–250CrossRefGoogle Scholar
  2. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970. doi: 10.1002/adma.200300381 CrossRefGoogle Scholar
  3. Allemand D (1993) The biology and skeletogenesis of the Mediterranean Red Coral: a review. Precious Corals Octocoral Res 2:19–39Google Scholar
  4. Allemand D, Bénazet-Tambutté S (1996) Dynamics of calcification in the mediterranean red coral, Corallium rubrum (Linnaeus) (Cnidaria, Octocorallia). J Exp Zool 276:270–278. doi: 10.1002/(sici)1097-010x(19961101)276:4<270:aid-jez4>;2-l CrossRefGoogle Scholar
  5. Allemand D, Grillo M-C (1992) Biocalcification mechanism in gorgonians: 45Ca uptake and deposition by the Mediterranean red coral Corallium rubrum. J Exp Zool 262:237–246. doi: 10.1002/jez.1402620302 CrossRefGoogle Scholar
  6. Allemand D, Cuif J-P, Watabe N, Oishi M, Kawaguchi T (1994) The organic matrix of skeletal structures of the Mediterranean red coral, Corallium rubrum. Bulletin de l’Institut Océanographique de Monaco 14:129–139Google Scholar
  7. Allemand D, Tambutté É, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 119–150. doi: 10.1007/978-94-007-0114-4_9 CrossRefGoogle Scholar
  8. Aurelle D, Ledoux JB, Rocher C, Borsa P, Chenuil A, Féral JP (2011) Phylogeography of the red coral (Corallium rubrum): inferences on the evolutionary history of a temperate gorgonian. Genetica. doi: 10.1007/s10709-011-9589-6
  9. Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58CrossRefGoogle Scholar
  10. Blum H, Beier H, Gross HJ (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93–99. doi: 10.1002/elps.1150080203 CrossRefGoogle Scholar
  11. Borelli G, Mayer-Gostan N, Merle PL, Pontual H, Boeuf G, Allemand D, Payan P (2003) Composition of biomineral organic matrices with special emphasis on turbot (Psetta maxima) otolith and endolymph. Calcif Tissue Int 72:717–725. doi: 10.1007/s00223-001-2115-6 CrossRefGoogle Scholar
  12. Bruckner AW (2009) Rate and extent of decline in Corallium (pink and red coral) populations: existing data meet the requirements for a CITES Appendix II listing. Mar Ecol Prog Ser 397:319–332. doi: 10.3354/meps08110 CrossRefGoogle Scholar
  13. Bussoletti E, Cottingham D, Bruckner A, Roberts G, Sandulli R (2010) Proceedings of the international workshop on red coral science, management, and trade: lessons from the Mediterranean. NOAA technical memorandum CRCP-13, Silver Spring, MDGoogle Scholar
  14. Calderon I, Garrabou J, Aurelle D (2006) Evaluation of the utility of COI and ITS markers as tools for population genetic studies of temperate gorgonians. J Exp Mar Biol Ecol 336:184–197CrossRefGoogle Scholar
  15. CITES (2008) Convention on international trade in endangered species of wild fauna and flora. Notification to the parties. Appendix III. No 2008/027, GenevaGoogle Scholar
  16. Coma R, Ribes M, Gili J-M, Zabala M (2000) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453. doi: 10.1016/s0169-5347(00)01970-4 CrossRefGoogle Scholar
  17. Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258. doi: 10.1002/jez.1402480302 CrossRefGoogle Scholar
  18. Costantini F, Fauvelot C, Abbiati M (2007a) Fine-scale genetic structuring in Corallium rubrum: evidence of inbreeding and limited effective larval dispersal. Mar Ecol Prog Ser 340:109–119CrossRefGoogle Scholar
  19. Costantini F, Fauvelot C, Abbiati M (2007b) Genetic structuring of the temperate gorgonian coral (Corallium rubrum) across the western Mediterranean Sea revealed by microsatellites and nuclear sequences. Mol Ecol 16:5168–5182CrossRefGoogle Scholar
  20. Costantini F, Taviani M, Remia A, Pintus E, Schembri PJ, Abbiati M (2010) Deep-water Corallium rubrum (L., 1758) from the Mediterranean Sea: preliminary genetic characterisation. Mar Ecol 31:261–269. doi: 10.1111/j.1439-0485.2009.00333.x CrossRefGoogle Scholar
  21. Cui F-Z, Li Y, Ge J (2007) Self-assembly of mineralized collagen composites. Mater Sci Eng 57:1–27. doi: 10.1016/j.mser.2007.04.001 CrossRefGoogle Scholar
  22. Cvejic J, Tambutté S, Lotto S, Mikov M, Slacanin I, Allemand D (2007) Determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection. Mar Biol 152:855–862. doi: 10.1007/s00227-007-0738-5 CrossRefGoogle Scholar
  23. Dana J-D (1846) Structure and classification of zoophytes. Lea and Blanchard, PhiladelphiaGoogle Scholar
  24. Dauphin Y (2006) Mineralizing matrices in the skeletal axes of two Corallium species (Alcyonacea). Comp Biochem Physiol A 145:54–64. doi: 10.1016/j.cbpa.2006.04.029 CrossRefGoogle Scholar
  25. Debreuil J, Tambutté S, Zoccola D, Segonds N, Techer N, Allemand D, Tambutté É (2011) Comparative analysis of the soluble organic matrix of axial skeleton and sclerites of Corallium rubrum: insights for biomineralization. Comp Biochem Physiol B 159:40–48CrossRefGoogle Scholar
  26. del Gaudio D, Fortunato G, Borriello M, Gili J, Buono P, Calcagno G, Salvatore F, Sacchetti L (2004) Genetic typing of Corallium rubrum. Mar Biotech 6:511–515. doi: 10.1007/s10126-004-3001-9 CrossRefGoogle Scholar
  27. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by Mollusk shell macromolecules. Science 271:67–69. doi: 10.1126/science.271.5245.67 CrossRefGoogle Scholar
  28. Fritsch E, Karampelas S (2008) Comment on: determination of canthaxanthin in the red coral (Corallium rubrum) from Marseille by HPLC combined with UV and MS detection (Cvejic et al. Mar Biol 152:855–862, 2007). Mar Biol 154:929–930. doi: 10.1007/s00227-008-0964-5 Google Scholar
  29. Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 304:11–17. doi: 10.1016/s0006-291x(03)00527-8 CrossRefGoogle Scholar
  30. Gallmetzer I, Haselmair A, Velimirov B (2010) Slow growth and early sexual maturity: bane and boon for the red coral Corallium rubrum. Estuar Coast Shelf Sci 90:1–10CrossRefGoogle Scholar
  31. Goldberg WM (1988) Chemistry, histochemistry and microscopy of the organic matrix of spicules from a gorgonian coral. Histochem Cell Biol 89:163–170. doi: 10.1007/bf00489919 CrossRefGoogle Scholar
  32. Gotliv B-A, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. ChemBioChem 4:522–529. doi: 10.1002/cbic.200200548 CrossRefGoogle Scholar
  33. Grillo MC, Goldberg WM, Allemand D (1993) Skeleton and sclerite formation in the precious red coral Corallium rubrum. Mar Biol 117:119–128. doi: 10.1007/bf00346433 CrossRefGoogle Scholar
  34. Houlbrèque F, Tambutté É, Richard C, Ferrier-Pagès C (2004) Importance of the micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  35. Kirschvink JL, Hagadorn JW (2000) A grand unified theory of biomineralization. In: Bäuerlein E (ed) The biomineralization of nano-and micro-structures. Wiley-VCH, Verlag GmbH, Weinheim, pp 139–150Google Scholar
  36. Kishinouye K (1903) Preliminary note on the Coralliidae of Japan. Zoologischer Anzeiger 26:623–662Google Scholar
  37. Knoll AH (2003) Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356. doi: 10.2113/0540329 CrossRefGoogle Scholar
  38. Lacaze-Duthiers H (1864) Histoire naturelle du corail. J.B. Bailière et Fils, ParisGoogle Scholar
  39. Ledoux JB, Garrabou J, Bianchimani O, Drap P, Féral JP, Aurelle D (2010a) Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, Corallium rubrum. Mol Ecol 19(19):4204–4216. doi: 10.1111/j.1365-294X.2010.04814.x CrossRefGoogle Scholar
  40. Ledoux JB, Mokhtar-Jamaï K, Roby C, Féral JP, Garrabou J, Aurelle D (2010b) Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus, 1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Mol Ecol 19:675–690. doi: 10.1111/j.1365-294X.2009.04516.x CrossRefGoogle Scholar
  41. Linnaeus C (1758) Systema naturae. Editio decima, reformata. Impensis Direct. Laurentii Salvii, HolmiaeGoogle Scholar
  42. Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University, New YorkGoogle Scholar
  43. Marin F, Luquet G, Marie B, Medakovic D (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276CrossRefGoogle Scholar
  44. Marschal C, Garrabou J, Harmelin JG, Pichon M (2004) A new method for measuring growth and age in the precious red coral Corallium rubrum (L.). Coral Reefs 23:423–432. doi: 10.1007/s00338-004-0398-6 CrossRefGoogle Scholar
  45. McFadden CS, France SC, Sánchez JA, Alderslade P (2006) A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol 41:513–527. doi: 10.1016/j.ympev.2006.06.010 CrossRefGoogle Scholar
  46. McFadden CS, Benayahu Y, Pante E, Thoma JN, Nevarez PA, France SC (2011) Limitations of mitochondrial gene barcoding in Octocorallia. Mol Ecol Resour 11:19–31. doi: 10.1111/j.1755-0998.2010.02875.x CrossRefGoogle Scholar
  47. Morel J-P, Rondi-Costanzo C, Ugolini D (1996) Corallo di ieri, corallo di oggi. Convegno del Centro Universitario Europeo per i Beni Culturali (CUEBC) di Ravello, Edipuglia, Bari, 2000Google Scholar
  48. Puverel S, Tambutté E, Pereira-Mouriès L, Zoccola D, Allemand D, Tambutté S (2005) Soluble organic matrix of two scleractinian corals: partial and comparative analysis. Comp Biochem Physiol B 141:480–487. doi: 10.1016/j.cbpc.2005.05.013 CrossRefGoogle Scholar
  49. Rahman MA, Isa Y (2005) Characterization of proteins from the matrix of spicules from the alcyonarian, Lobophytum crassum. J Exp Mar Biol Ecol 321:71–82. doi: 10.1016/j.jembe.2005.01.012 CrossRefGoogle Scholar
  50. Rahman MA, Isa Y, Uehara T (2006) Studies on two closely related species of Octocorallians: biochemical and molecular characteristics of the organic matrices of endoskeletal sclerites. Mar Biotech 8:415–424. doi: 10.1007/s10126-005-6150-6 CrossRefGoogle Scholar
  51. Ridley S (1882) On the arrangement of the Coralliidae, with descriptions of new or rare species. Proc Zool Soc London 1882:221–233Google Scholar
  52. Santangelo G, Abbiati M (2001) Red coral: conservation and management of an over-exploited Mediterranean species. Aquat Conserv Mar Freshw Ecosyst 11:253–259. doi: 10.1002/aqc.451 CrossRefGoogle Scholar
  53. Santangelo G, Maggi E, Bramanti L, Bongiorni L (2004) Demography of the over-exploited Mediterranean red coral (Corallium rubrum L. 1758). Sci Mar 68:199–204Google Scholar
  54. Simkiss K, Wilbur KM (1989) Biomineralization: cell biology and mineral deposition. Academic Press, New YorkGoogle Scholar
  55. Tambutté S, Tambutté É, Zoccola D, Allemand D (2007a) Organic matrix and biomineralization of scleractinian corals. In: Baeuerlein E (ed) Handbook of biomineralization. The biology of biominerals structure formation. Wiley-VCH, Weinheim, Germany, pp 243–259Google Scholar
  56. Tambutté S, Tambutté E, Zoccola D, Caminiti N, Lotto S, Moya A, Allemand D, Adkins J (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151:71–83. doi: 10.1007/s00227-006-0452-8 CrossRefGoogle Scholar
  57. Tambutté S, Holcomb M, Ferrier-Pagès C, Reynaud S, Tambutté É, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol. doi: 10.1016/j.jembe.2011.07.026
  58. Tsounis G, Rossi S, Gili J-M, Arntz W (2007) Red coral fishery at the Costa Brava (NW Mediterranean): case study of an overharvested precious coral. Ecosystems 10:975–986. doi: 10.1007/s10021-007-9072-5 CrossRefGoogle Scholar
  59. Tsounis G, Rossi S, Grigg R, Santangelo G, Bramanti L, Gili J-M (2010) The exploitation and conservation of precious corals. Oceanogr Mar Biol Annu Rev 48:161–212CrossRefGoogle Scholar
  60. Uda K, Komeda Y, Koyama H, Koga K, Fujita T, Iwasaki N, Suzuki T (2011) Complete mitochondrial genomes of two Japanese precious corals, ParaCorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement. Gene 476:27–37. doi: 10.1016/j.gene.2011.01.019 CrossRefGoogle Scholar
  61. Vargas S, Breedy O, Siles F, Guzman HM (2010) How many kinds of sclerite? Towards a morphometric classification of gorgoniid microskeletal components. Micron 41:158–164. doi: 10.1016/j.micron.2009.08.009 CrossRefGoogle Scholar
  62. Vielzeuf D, Garrabou J, Baronnet A, Grauby O, Marschal C (2008) Nano to macroscale biomineral architecture of red coral (Corallium rubrum). Am Mineral 93:1799–1815. doi: 10.2138/am.2008.2923 CrossRefGoogle Scholar
  63. Vielzeuf D, Floquet N, Chatain D, Bonnete F, Ferry D, Garrabou J, Stolper EM (2010) Multilevel modular mesocrystalline organization in red coral. Am Mineral 95:242–248. doi: 10.2138/am.2010.3268 CrossRefGoogle Scholar
  64. Weinberg S (1976) Revision of the common octocorallia of the Mediterranean circalittoral. I Gorgonacea. Beaufortia 24:63–104Google Scholar
  65. Weiner S (1984) Organization of organic matrix components in mineralized tissues. Am Zool 24:945–951. doi: 10.1093/icb/24.4.945 Google Scholar
  66. Weiner S, Traub W, Lowenstam MA (1983) Organic matrix in calcified exoskeletons. In: Westbroeck P, De Jong EW (eds) Biomineralization and biological metal accumulation. Reidel Publishing Company, Dordrecht, Holland, pp 205–224CrossRefGoogle Scholar
  67. Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–216Google Scholar
  68. Wheeler AP, George JW, Evans CA (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212:1397–1398CrossRefGoogle Scholar
  69. Williams GC (1997) Preliminary assessment of the phylogeny of Pennatulacea (Anthozoa: Octocorallia), with a reevaluation of Ediacaran frond-like fossils, and a synopsis of the history of evolutionary thought regarding sea pens. In: Proceedings of the 6th international conference coelenterate biology 1995, pp 497–509Google Scholar
  70. Zabala M, Ballesteros E (1989) Surface-dependent strategies and energy flux in benthic marine communities or why corals do not exist in the Mediterranean. Sci Mar 53:3–17Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. Debreuil
    • 1
  • S. Tambutté
    • 1
  • D. Zoccola
    • 1
  • N. Segonds
    • 1
  • N. Techer
    • 1
  • C. Marschal
    • 2
  • D. Allemand
    • 1
  • S. Kosuge
    • 3
  • É. Tambutté
    • 1
  1. 1.Centre Scientifique de MonacoMonacoMonaco
  2. 2.Aix-Marseille Université, CNRS-UMR 6540 DIMAR, Centre d’Océanologie de MarseilleMarseilleFrance
  3. 3.Institute of Malacology of TokyoNishi-Tokyo City, TokyoJapan

Personalised recommendations