Skip to main content

Influences of Coral Intra-skeletal Organic Matrix on Calcium Carbonate Precipitation

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

Corals are among the most important calcium carbonate mineralizers and form the main structures of the reefs, which provide an important socio-economical support. Despite this, and the fact the is quite generally accepted that coral mineralization is a biological controlled process, few studied have so far addressed the role of the intra-skeletal organic matrix in the calcification process. This chapter makes a scientific path on what is known on the biological control of coral mineralization describing the more relevant studies. The sections are sequenced with the aim to guide the readers to be conscious of the importance of the organic matrix in the mineralization process that is finally illustrated through a series of experiments in vivo and in vitro. Accordingly the chapter presents an overview on coral biomineralization, anatomy and physiology, skeleton microsctructure, tissue-skeleton, minor element distribution, organic matrix, biomineralization proteins and finally calcium carbonate precipitation in the presence of coral organic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals – stereochemical requirements in biomineralization. Proc Natl Acad Sci U S A 82(12):4110–4114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Addadi L, Moradian J, Shay E et al (1987) A chemical-model for the cooperation of sulfates and carboxylates in calcite crystal nucleation – relevance to biomineralization. Proc Natl Acad Sci U S A 84(9):2732–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adkins JF, Boyle EA, Curry WB et al (2003) Stable isotopes in deep-sea corals and a new mechanism for “vital effects”. Geochim Cosmochim Acta 67(6):1129–1143

    Article  CAS  Google Scholar 

  • Aizenberg J, Albeck S, Weiner S et al (1994) Crystal protein interactions studied by overgrowth of calcite on biogenic skeletal elements. J Cryst Growth 142(1–2):156–164

    Article  CAS  Google Scholar 

  • Albeck S, Aizenberg J, Addadi L et al (1993) Interactions of various skeletal intracrystalline components with calcite crystals. J Am Chem Soc 115(25):11691–11697

    Article  CAS  Google Scholar 

  • Allemand D, Ferrier-Pages C, Furla P et al (2004) Biomineralisation in reef-building corals: from molecular mechanisms to environmental control. CR Palevol 3(6–7):453–467

    Article  Google Scholar 

  • Allison N (1996) Comparative determinations of trace and minor elements in coral aragonite by ion microprobe analysis, with preliminary results from Phuket, southern Thailand. Geochim Cosmochim Acta 60(18):3457–3470

    Article  CAS  Google Scholar 

  • Allison N, Finch AA, Newville M et al (2005) Strontium in coral aragonite: 3. Sr coordination and geochemistry in relation to skeletal architecture. Geochim Cosmochim Acta 69(15):3801–3811

    Article  CAS  Google Scholar 

  • Barnes DJ (1985) The effect of photosynthetic and respiratory inhibitors upon calcification in the staghorn coral, Acropora formosa. In: Gabrie C, Harmelin M (eds) Proceedings of the 5th International Coral Reef Congress, Tahiti

    Google Scholar 

  • Bedouet L, Schuller MJ, Marin F et al (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and of the abalone Haliotis tuberculata: extraction and partial analysis of nacre proteins. Comp Biochem Phys B 128(3):389–400

    Article  CAS  Google Scholar 

  • Benayahu Y, Jeng MS, Perkol-Finkel S et al (2004) Soft corals (Octocorallia : Alcyonacea) from southern Taiwan. II. Species diversity and distributional patterns. Zool Stud 43(3):548–560

    Google Scholar 

  • Benzoni F, Stefani F, Stolarski J et al (2007) Debating phylogenetic relationships of the scleractinian Psammocora: molecular and morphological evidences. Contrib Zool 76(1):35–54

    Google Scholar 

  • Blamart D, Rollion-Bard C, Meibom A et al (2007) Correlation of boron isotopic composition with ultrastructure in the deep- sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. Geochem Geophys Geosyst 8(12):Q12001–Q12011

    Article  CAS  Google Scholar 

  • Brown B, Hewit R, Le Tissier M (1983) The nature and construction of skeletal spines in Pocillopora damicornis (Linnaeus). Coral Reefs 2(2):81–89

    Article  Google Scholar 

  • Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. University of Queensland Press, Brisbane

    Google Scholar 

  • Chalker B, Carr K, Gil E (1985) Measurement of primary production and calcification in situ on coral reefs using electrode techniques. In: Gabrie C, Harmelin M (eds) Proceedings of the 5th International Coral Reef Congress, Tahiti

    Google Scholar 

  • Clode PL, Marshall AT (2002) Low temperature FESEM of the calcifying interface of a scleractinian coral. Tissue Cell 34(3):187–198

    Article  CAS  PubMed  Google Scholar 

  • Clode PL, Marshall AT (2003) Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220(3–4):153–161

    Article  CAS  PubMed  Google Scholar 

  • Cohen AL, McConnaughey TA (2003) Geochemical perspectives on coral mineralization. In: Dove PM, De Yereo JJ, Weiner S (eds) Biomineralization. Reviews in mineralogy and geochemistry, vol 54. Mineralogical Society of America, Chantilly, pp 151–187

    Google Scholar 

  • Cohen AL, Sohn RA (2004) Tidal modulation of Sr/Ca ratios in a Pacific reef coral. Geophys Res Lett 31(16):L16310

    Article  CAS  Google Scholar 

  • Cohen AL, Layne GD, Hart SR et al (2001) Kinetic control of skeletal Sr/Ca in a symbiotic coral: implications for the paleotemperature proxy. Paleoceanography 16(1):20–26

    Article  Google Scholar 

  • Cohen AL, Owens KE, Layne GD et al (2002) The effect of algal symbionts on the accuracy of Sr/Ca paleotemperatures from coral. Science 296(5566):331–333

    Article  CAS  PubMed  Google Scholar 

  • Cohen AL, Gaetani GA, Lundalv T et al (2006) Compositional variability in a cold-water scleractinian, Lophelia pertusa: new insights into “vital effects”. Geochem Geophys Geosyst 7(12):Q12004

    Article  CAS  Google Scholar 

  • Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of ‘centers of calcification’ in septa of some recent scleractinian corals. Paleontol Z 72(3–4):257–269

    Article  Google Scholar 

  • Cuif JP, Dauphin Y (2005a) The environment recording unit in coral skeletons – a synthesis of structural and chemical evidences for a biochemically driven, stepping-growth process in fibres. Biogeosciences 2(1):61–73

    Article  CAS  Google Scholar 

  • Cuif JP, Dauphin Y (2005b) The two-step mode of growth in the scleractinian coral skeletons from the micrometre to the overall scale. J Struct Biol 150(3):319–331

    Article  PubMed  Google Scholar 

  • Cuif JP, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some resent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88(3):582–592

    Article  CAS  Google Scholar 

  • Cuif JP, Dauphin Y, Doucet J et al (2003a) XANES mapping of organic sulfate in three scleractinian coral skeletons. Geochim Cosmochim Acta 67(1):75–83

    Article  CAS  Google Scholar 

  • Cuif JP, Lecointre G, Perrin C et al (2003b) Patterns of septal biomineralization in Scleractinia compared with their 28S rRNA phylogeny: a dual approach for a new taxonomic framework. Zool Scr 32(5):459–473

    Article  Google Scholar 

  • Dana JD (1846) Structure and classification of zoophytes. United States exploring expedition 1838–1842. Lea and Blanchard, Philadelphia

    Google Scholar 

  • Dauphin Y, Cuif JP, Massard P (2006) Persistent organic components in heated coral aragonitic skeletons-Implications for palaeoenvironmental reconstructions. Chem Geol 231(1–2):26–37

    Article  CAS  Google Scholar 

  • Debreuil J, Tambutte E, Zoccola D et al (2012) Molecular cloning and characterization of first organic matrix protoein from sclerites of red coral, Corallium rubrum. J Biol Chem 287(23):19367–19376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dodge RE, Vaisnys JR (1975) Hermatypic coral growth banding as environmental recorder. Nature 258(5537):706–708

    Article  Google Scholar 

  • Enmar R, Stein M, Bar-Matthews M et al (2000) Diagenesis in live corals from the Gulf of Aqaba. I. The effect on paleo-oceanography tracers. Geochim Cosmochim Acta 64(18):3123–3132

    Article  CAS  Google Scholar 

  • Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50(4):1025–1032

    Article  Google Scholar 

  • Falini G, Fermani S (2013) The strategic role of adsorption phenomena in biomineralization. Cryst Res Technol 48(10):864–876

    Article  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S et al (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271(5245):67–69

    Article  Google Scholar 

  • Falini G, Fermani S, Tosi G et al (2009) Calcium carbonate morphology and structure in the presence of seawater ions and humic acids. Cryst Growth Des 9(5):2065–2072

    Article  CAS  Google Scholar 

  • Falini G, Reggi M, Fermani S et al (2013) Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J Struct Biol 183(2):226–238

    Article  CAS  PubMed  Google Scholar 

  • Fallon SJ, McCulloch MT, van Woesik R et al (1999) Corals at their latitudinal limits: laser ablation trace element systematics in Porites from Shirigai Bay, Japan. Earth Planet Sci Lett 172(3–4):221–238

    Article  CAS  Google Scholar 

  • Fang LS, Chou YC (1992) Concentration of fulvic-acid in the growth bands of hermatypic corals in relation to local precipitation. Coral Reefs 11(4):187–191

    Article  Google Scholar 

  • Farre B, Cuif JP, Dauphin Y (2010) Occurrence and diversity of lipids in modern coral skeletons. Zoology 113(4):250–257

    Article  PubMed  Google Scholar 

  • Foster A (1979) Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J Exp Mar Biol Ecol 39(1):25–54

    Article  Google Scholar 

  • Fukuda I, Ooki S, Fujita T et al (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Co 304(1):11–17

    Article  CAS  Google Scholar 

  • Furedimilhofer H, Moradian-Oldak J, Weiner S et al (1994) Interactions of matrix proteins from mineralized tissues with octacalcium phosphate. Connect Tissue Res 30(4):251–264

    Article  CAS  Google Scholar 

  • Gabitov RI, Cohen AL, Gaetani GA et al (2006) The impact of crystal growth rate on element ratios in aragonite: an experimental approach to understanding vital effects. Geochim Cosmochim Acta 70(18):A187–A220

    Article  Google Scholar 

  • Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70(18):4617–4634

    Article  CAS  Google Scholar 

  • Gagnon AC, Adkins JF, Fernandez DP et al (2007) Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth Planet Sci Lett 261(1–2):280–295

    Article  CAS  Google Scholar 

  • Garland T, Kelly SA (2006) Phenotypic plasticity and experimental evolution. J Exp Biol 209(12):2344–2361

    Article  PubMed  Google Scholar 

  • Gautret P, Cuif JP, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36(1):189–194

    Article  Google Scholar 

  • Gilis M, Meibom A, Domart-Coulon I et al (2014) Biomineralization in newly settled recruits of the scleractinian coral Pocillopora damicornis. J Morphol 275(12):1349–1365

    Article  CAS  PubMed  Google Scholar 

  • Goffredo S, Vergni P, Reggi M et al (2011) The skeletal organic matrix from mediterranean coral Balanophyllia europaea influences calcium carbonate precipitation. PLoS One 6(7):12

    Article  CAS  Google Scholar 

  • Goldberg WM (2001a) Desmocytes in the calicoblastic epithelium of the stony coral Mycetophyllia reesi and their attachment to the skeleton. Tissue Cell 33(4):388–394

    Article  CAS  PubMed  Google Scholar 

  • Goldberg WM (2001b) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33(4):376–387

    Article  CAS  PubMed  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116(1):59–75

    Article  CAS  Google Scholar 

  • Hart SR, Cohen AL (1996) An ion probe study of annual cycles of Sr/Ca and other trace elements in corals. Geochim Cosmochim Acta 60(16):3075–3084

    Article  CAS  Google Scholar 

  • Helman Y, Natale F, Sherrell RM et al (2008) Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc Natl Acad Sci U S A 105(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Holcomb M, Cohen AL, Gabitov RI et al (2009) Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim Cosmochim Acta 73(14):4166–4179

    Article  CAS  Google Scholar 

  • Inoue M, Suzuki A, Nohara M et al (2007) Empirical assessment of coral Sr/Ca and Mg/Ca ratios as climate proxies using colonies grown at different temperatures. Geophys Res Lett 34(12):L12611

    Article  CAS  Google Scholar 

  • Jacques TG, Pilson MEQ (1980) Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol 60(2–3):167–178

    Article  CAS  Google Scholar 

  • Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae. Mar Biol 76(2):135–148

    Article  CAS  Google Scholar 

  • Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cytol 67:171–214

    Article  CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New York

    Google Scholar 

  • Mann S (2001) Biomineralization: principles and concepts in bioinorganic materials chemistry. Oxford University Press, New York

    Google Scholar 

  • Mass T, Drake JL, Haramaty L et al (2012) Aragonite precipitation by “proto-polyps” in coral cell cultures. PLoS One 7(4):e35049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mass T, Drake JL, Haramaty L et al (2013) Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr Biol 23(12):1126–1131

    Article  CAS  PubMed  Google Scholar 

  • Matthews BJH, Jones AC, Theodorou NK et al (1996) Excitation-emission-matrix fleorescence spectroscopy applied to humic acid bands in coral reefs. Mar Chem 55(3–4):317–332

    Article  CAS  Google Scholar 

  • Meibom A, Cuif JP, Hillion FO et al (2004) Distribution of magnesium in coral skeleton. Geophys Res Lett 31(23):L23306

    Article  Google Scholar 

  • Meibom A, Yurimoto H, Cuif JP et al (2006) Vital effects in coral skeletal composition display strict three-dimensional control. Geophys Res Lett 33(11):L11608

    Article  CAS  Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85(3):496–504

    Article  CAS  Google Scholar 

  • Milne-Edwards H, Haime J (1857) Histoire naturelle des coralliaires, ou polypes proprement dits. Roret, Paris

    Book  Google Scholar 

  • Moradian-Oldak J, Frolow F, Addadi L et al (1992) Interactions between acidic matrix macromolecules and calcium-phosphate ester crystals – relevance to carbonate apatite formation in biomineralization. Proc R Soc B 247(1318):47–55

    Article  CAS  PubMed  Google Scholar 

  • Motai S, Nagai T, Sowa K et al (2012) Needle-like grains across growth lines in the coral skeleton of Porites lobata. J Struct Biol 180(3):389–393

    Article  CAS  PubMed  Google Scholar 

  • Muscatine L, Tambutte E, Allemand D (1997) Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16(4):205–213

    Article  Google Scholar 

  • Perrin C (2003) Compositional heterogeneity and microstructural diversity of coral skeletons: implications for taxonomy and control on early diagenesis. Coral Reefs 22(2):109–120

    Article  Google Scholar 

  • Petite H, Viateau V, Bensaid W et al (2000) Tissue-engineered bone regeneration. Nat Biotechnol 18(9):959–963

    Article  CAS  PubMed  Google Scholar 

  • Puverel S, Tambutte E, Zoccola D et al (2005a) Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24(1):149–156

    Article  Google Scholar 

  • Puverel S, Tambutte E, Pererra-Mouries L et al (2005b) Soluble organic matrix of two scleractinian corals: partial and comparative analysis. Comp Biochem Phys B 141(4):480–487

    Article  CAS  Google Scholar 

  • Puverel S, Houlbreque F, Tambutte E et al (2007) Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata. Comp Biochem Phys A 147(4):850–856

    Article  CAS  Google Scholar 

  • Ramos-Silva P, Kaandorp J, Huisman L et al (2013) The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol Biol Evol 30(9):2099–2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos-Silva P, Kaandorp J, Herbst F et al (2014) The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization. Plos One 9(6):e97454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raz-Bahat M, Erez J, Rinkevich B (2006) In vivo light-microscopic documentation for primary calcification processes in the hermatypic coral Stylophora pistillata. Cell Tissue Res 325(2):361–368

    Article  PubMed  Google Scholar 

  • Reggi M, Fermani S, Landi V et al (2014) Biomineralization in mediterranean corals: the role of the intraskeletal organic matrix. Cryst Growth Des 14(9):4310–4320

    Article  CAS  Google Scholar 

  • Sancho-Tomas M, Fermani S, Goffredo S et al (2014) Exploring coral biomineralization in gelling environments by means of a counter diffusion system. Cryst Eng Comm 16(7):1257–1266

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B, Škapin SD et al (2011) Colloid-chemical processes in the growth and design of the bio-inorganic aragonite structure in the scleractinian coral Cladocora caespitosa. J Colloid Interf Sci 354(1):181–189

    Article  CAS  Google Scholar 

  • Song RQ, Cölfen H, Xu AW et al (2009) Polyelectrolyte-directed nanoparticle aggregation: systematic morphogenesis of calcium carbonate by nonclassical crystallization. ACS Nano 3(7):1966–1978

    Article  CAS  PubMed  Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. University of California Press, Berkeley

    Google Scholar 

  • Tambutte E, Allemand D, Zoccola D et al (2007a) Observations of the tissue-skeleton interface in the scleractinian coral Stylophora pistillata. Coral Reefs 26(3):517–529

    Article  Google Scholar 

  • Tambutte S, Tambutte E, Zoccola D et al (2007b) Characterization and role of carbonic anhydrase in the calcification process of the azooxanthellate coral Tubastrea aurea. Mar Biol 151(1):71–83

    Article  CAS  Google Scholar 

  • Tambutte E, Tambutte S, Segonds N et al (2012) Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. Proc R Soc B Biol 279(1726):19–27

    Article  CAS  Google Scholar 

  • van Oppen MJH, McDonald BJ, Willis B et al (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18(7):1315–1329

    Article  PubMed  Google Scholar 

  • Vandermeulen JH (1975) Studies on reef corals. III. Fine structural changes of calicoblast cells in Pocillopora damicornis during settling and calcification. Mar Biol 31(1):69–77

    Article  Google Scholar 

  • Vaughan TW, Wells JW (1943) Revision of the suborders families, and genera of the scleractinia. Geol Soc Am Spec Pap 44:1–394

    Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. University of Hawaii Press, Honolulu

    Google Scholar 

  • Volpi N (2002) Influence of charge density, sulfate group position and molecular mass on adsorption of chondroitin sulfate onto coral. Biomaterials 23(14):3015–3022

    Article  CAS  PubMed  Google Scholar 

  • Wainwright SA (1964) Studies of the mineral phase of coral skeleton. Exp Cell Res 34(2):213–230

    Article  CAS  Google Scholar 

  • Watanabe T, Fukuda I, China K et al (2003) Molecular analyses of protein components of the organic matrix in the exoskeleton of two scleractinian coral species. Comp Biochem Phys B 136(4):767–774

    Article  CAS  Google Scholar 

  • Watson EB (1996) Surface enrichment and trace-element uptake during crystal growth. Geochim Cosmochim Acta 60(24):5013–5020

    Article  CAS  Google Scholar 

  • Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Mineral 80(11–12):1179–1187

    Article  CAS  Google Scholar 

  • Weiner S, Dove PM (2003) An overview on biomineralization processes and the problem of the vital effect. In: Dove PM, De Yereo JJ, Weiner S (eds) Biomineralization. Review in mineralogy and geochemistry, vol 54. Mineralogical Society of America, Chantilly, pp 1–24

    Google Scholar 

  • Wells JW (1956) Scleractinia. In: Moore RC (ed) Treatise on invertebrate paleontology. Part F Coelenterata. Geological Society of America & University of Kansas Press, Lawrence, pp 328–440

    Google Scholar 

  • Willis BL (1985) Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. In: Gabrie C, Harmelin M (eds) Proceedings of the 5th International Coral Reef Congress, Tahiti

    Google Scholar 

  • Zoccola D, Tambutte E, Senegas-Balas F et al (1999) Cloning of a calcium channel alpha 1 subunit from the reef-building coral, Stylophora pistillata. Gene 227(2):157–167

    Article  CAS  PubMed  Google Scholar 

  • Zoccola D, Tambutte E, Kulhanek E et al (2004) Molecular cloning and localization of a PMCA P-type calcium ATPase from the coral Stylophora pistillata. Biochem Bioph Acta-Biomembr 1663(1–2):117–126

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant.

Agreement No. [249930-CoralWarm: Corals and global warming: the Mediterranean versus the Red Sea; www.CoralWarm.eu]. We thank Gianni Neto for the underwater pictures in Fig. 13.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Falini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reggi, M., Fermani, S., Levy, O., Dubinsky, Z., Goffredo, S., Falini, G. (2016). Influences of Coral Intra-skeletal Organic Matrix on Calcium Carbonate Precipitation. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_13

Download citation

Publish with us

Policies and ethics