Skip to main content
Log in

Behavioural and metabolic adaptations of marine isopods to the rafting life style

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Rafting on floating objects is a common dispersal mechanism for many marine invertebrates. In order to identify adaptations to the rafting life style, we compared behavioural and metabolic characteristics of two isopods, the obligate rafter Idotea metallica and the facultative rafter Idotea baltica. In laboratory experiments, I. metallica showed low locomotive activity and a tight association to the substratum. Idotea baltica, in contrast, was more active with more frequent excursions in the surrounding water column. Oxygen consumption rates were similar in both species. Idotea metallica fed on zooplankton making this species widely independent of autochthonous food resources of the raft. Feeding rates and digestive enzyme activities were low in I. metallica. Reduced egestion rates may indicate slow gut passage and, thus, efficient resorption of nutrients. Efficient food utilization and the ability to accumulate high amounts of storage products, i.e. lipids, indicate a possible adaptation of I. metallica to low food availability or starvation. The feeding behaviour of I. baltica, in contrast, was more herbivorous and appeared wasteful and inefficient. Low lipid contents in I. baltica also indicate poor storage reserves. Thus, I. baltica requires a permanent access to food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abelló P, Guerao G, Codina M (2004) Distribution of the neustonic isopod Idotea metallica in relation to shelf-slope frontal structures. J Crust Biol 24:558–566

    Google Scholar 

  • Aliani S, Molcard A (2003) Hitch-hiking on floating marine debris: macrobenthic species in the Western Mediterranean Sea. Hydrobiologia 503:59–67

    Article  Google Scholar 

  • Biesiot PM, Wang SY, Perry HM, Trigg C (1999) Organic reserves in the midgut gland and fat body of the giant deep-sea isopod Bathynomus giganteus. J Crust Biol 19:450–458

    Article  Google Scholar 

  • Boehlert GW, Yoklavich MM (1984) Carbon assimilation as a function of ingestion rate in larval pacific herring, Clupea harengus pallasi Valenciennes. J Exp Mar Biol Ecol 79:251–262

    Article  CAS  Google Scholar 

  • Bulnheim H-P (1974) Respiratory metabolism of Idotea balthica (Crustacea, Isopoda) in relation to environmental variables, acclimation process and moulting. Helgoländer Meeresunters 26:464–480

    Article  Google Scholar 

  • Cheng L (1975) Marine pleuston—animals at the sea-air interface. Oceanogr Mar Biol 13:181–212

    Google Scholar 

  • Fox HM, Simmonds BG (1933) Metabolic rates of aquatic arthropods from different salinities. J Exp Biol 10:67–78

    CAS  Google Scholar 

  • Franke H-D, Gutow L, Janke M (1999) The recent arrival of the oceanic isopod Idotea metallica Bosc off Helgoland (German Bight, North Sea): an indication of a warming trend in the North Sea? Helgoländer Meeresunters 52:347–357

    Article  Google Scholar 

  • Franke H-D, Janke M (1998) Mechanisms and consequences of intra- and interspecific interference competition in Idotea baltica (Pallas) and Idotea emarginata (Fabricius) (Crustacea: Isopoda): a laboratory study of possible proximate causes of habitat segregation. J Exp Mar Biol Ecol 227:1–21

    Article  Google Scholar 

  • Grasshoff K (1983) Determination of oxygen. In: Grasshoff K, Ehrhardt M, Kremling K (eds) Methods of seawater analysis. Verlag Chemie, Weinheim, pp 61–72

    Google Scholar 

  • Gutow L (2003) Local population persistence as a pre-condition for large-scale dispersal of Idotea metallica (Crustacea, Isopoda) on drifting habitat patches. Hydrobiologia 503:59–67

    Article  Google Scholar 

  • Gutow L, Franke H-D (2001) On the current and possible future status of the neustonic isopod Idotea metallica Bosc in the North Sea: a laboratory study. J Sea Res 45:37–44

    Article  Google Scholar 

  • Gutow L, Franke H-D (2003) Metapopulation structure of the marine isopod Idotea metallica, a species associated with drifting habitat patches. Helgoland Mar Res 56:259–264

    Google Scholar 

  • Hagen W, Auel H (2001) Seasonal adaptations and the role of lipids in oceanic zooplankton. Zoology 104:313–326

    Article  PubMed  CAS  Google Scholar 

  • Hartmann J (1976) Der Jahresgang von Neuston im Golf von Neapel. Int Rev Ges Hydrobio 61:825–840

    Google Scholar 

  • Hemmi A, Jormalainen V (2002) Nutrient enhancement increases performance of a marine herbivore via quality of its food algae. Ecology 83:1052–1064

    Article  Google Scholar 

  • Herring PJ (1969) Pigmentation and carotinoid metabolism of the marine isopod Idotea metallica. J Mar Biol Assoc UK 49:766–779

    Google Scholar 

  • Ingólfsson A (1995) Floating clumps of seaweed around Iceland: natural microcosms and a means of dispersal for shore fauna. Mar Biol 122:13–21

    Article  Google Scholar 

  • Ingólfsson A (2000) Colonization of floating seaweed by pelagic and subtidal benthic animals in southwestern Iceland. Hydrobiologia 440:181–189

    Article  Google Scholar 

  • Jones MB (1973) Survival and oxygen consumption in various salinities of three species of Idotea (Crustacea, Isopoda) from different habitats. Comp Biochem Physiol 48A:501–506

    Google Scholar 

  • Jones DA, Kumlu M, Le Vay L, Fletcher DJ (1997) The digestive physiology of herbivorous, omnivorous and carnivorous crustacean larvae: a review. Aquaculture 155:285–295

    Article  Google Scholar 

  • Korczynski RE (1989) Biochemical composition of the isopod Mesidotea entomon (Linnaeus) from the western Arctic. Polar Biol 9:391–395

    Article  Google Scholar 

  • Kurmaly K, Yule AB, Jones DA (1989) An energy budget for the larvae of Penaeus monodon (Fabricius). Aquaculture 81:13–25

    Article  Google Scholar 

  • Le Vay L, Jones DA, Puello-Cruz AC, Sangha RS, Ngamphongsai C (2001) Digestion in relation to feeding strategies exhibited by crustacean larvae. Comp Biochem Physiol 128A:623–630

    CAS  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Google Scholar 

  • Miller MA (1968) Isopoda and Tanaidacea from buoys in coastal waters of the continental United States, Hawaii, and the Bahamas (Crustacea). Proc US Nat Mus 125:1–53

    Google Scholar 

  • Moreira PS (1972) Species of marine Isopoda (Crustacea, Peracarida) from Southern Brazil. Bolm Inst Oceanogr S Paulo 21:163–179

    Google Scholar 

  • Morris BF, Mogelberg DD (1973) Identification manual to the pelagic Sargassum fauna. Bermuda Biol Stat Spec Publ 11:1–63

    Google Scholar 

  • Naylor E (1972) British Marine Isopods. Linn Soc Synopsis of the British Fauna (new series) No. 3. Academic, London

  • Saborowski R, Buchholz F (1996) Annual changes in the nutritive state of North Sea dab. J Fish Biol 49:173–194

    Article  Google Scholar 

  • Sano M, Omori M, Taniguchi K (2003) Predator-prey systems of drifting seaweed communities off the Tohoku coast, northern Japan, as determined by feeding habitat analysis of phytal animals. Fish Sci 69:260–268

    Article  CAS  Google Scholar 

  • Strong KW, Daborn GR (1979) Growth and energy utilisation of the intertidal isopod Idotea baltica (Pallas) (Crustacea: Isopoda). J Exp Mar Biol Ecol 41:101–123

    Article  Google Scholar 

  • Thiel M, Gutow L (2005a) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol 43:279–418

    Google Scholar 

  • Thiel M, Gutow L (2005b) The ecology of rafting in the marine environment. I. The floating substrata. Oceanogr Mar Biol 42:181–263

    Article  Google Scholar 

  • Thiel M, Hinojosa I, Vasquez N, Macaya E (2003) Floating marine debris in coastal waters of the SE-Pacific (Chile). Mar Poll Bull 46:224–231

    Article  CAS  Google Scholar 

  • Tully O, Ó Céidigh P (1986) The ecology of Idotea species (Isopoda) and Gammarus locusta (Amphipoda) on surface driftweed in Galway Bay (West of Ireland). J Mar Biol Assoc UK 66:931–942

    Article  Google Scholar 

  • van der Baan SM, Holthuis LB (1969) On the occurrence of Isopoda in the surface plankton in the North Sea near the lightship “Texel”. Neth J Sea Res 4:354–363

    Article  Google Scholar 

  • Vetter R-A, Franke H-D, Buchholz F (1999) Habitat-related differences in the responses to oxygen deficiencies in Idotea baltica and Idotea emarginata (Isopoda, Crustacea). J Exp Mar Biol Ecol 239:259–272

    Article  Google Scholar 

  • Zöllner N, Kirsch K (1962) Über die quantitative Bestimmung von Lipoiden (Mikromethode) mittels der vielen natürlichen Lipoiden (allen bekannten Plasmalipoiden) gemeinsamen Sulphophosphovanillin-Reaktion. Z Gesamte Exp Med 135:545–561

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Gutow.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutow, L., Strahl, J., Wiencke, C. et al. Behavioural and metabolic adaptations of marine isopods to the rafting life style. Mar Biol 149, 821–828 (2006). https://doi.org/10.1007/s00227-006-0257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-006-0257-9

Keywords

Navigation