Skip to main content
Log in

Optimizing conditions for using deep eutectic solvents to extract lignin from black liquor

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Lignin extraction from black liquor (BL) was investigated employing four deep eutectic solvents (DESs) and a control solvent ([Emim][Ac]). A screening study was employed to determine the best DES, lactic acid:ChCl at a 11:1 molar ratio. La:ChCl(11:1) could extract 79.7 ± 2.1% of the lignin content of BL compared to [Emim][Ac] with 79.9 ± 2.3% at 95 °C, time of about 4 h, and a DES:BL(20:1). The DESs selected were regenerated three times, and the extraction efficiency using DES regenerated was statistically similar to the extraction values using DES before regeneration. FTIR spectra for the extracted lignin samples agreed with the peaks for a standard lignin. 1H-13C-HSQC-NMR detected the side chain structure and aromatic linkage peaks in the lignin extracted. Lignin extraction was optimized for La:ChCl using RSM. A BBD was utilized to develop a model to predict the lignin extraction based on operating factors. The Anderson–Darling statistic confirmed a normal distribution of the residuals, which demonstrated a reasonable correlation between predicted and experimental data. The highest extraction of lignin predicted using D-optimality analysis was 83.8% at optimum conditions of time = 4.6 h, temperature = 99 °C, DES:BL(20:1), and La:ChCl(11:1). An experiment to test the extraction under these conditions was performed in triplicate and yielded a value of 79.2 ± 1.86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

Data of the compounds and model are available from the authors.

Sample availability

Samples of the compounds are available from the authors.

References

  • Abbott AP, Boothby D, Capper G, Davie DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  PubMed  Google Scholar 

  • Achinivu EC (2014) Isolation and recovery of lignin from lignocellulosic biomass using recyclable protic ionic liquids (PILs) for a cost-effective biomass processing technique. Doctoral Thesis. North Carolina State University, North Carolina

  • Alen R, Sjostrom E, Vaskikari P (1985) Carbon dioxide precipitation of lignin from alkaline pulping liquors. Cellulose Chem Technol 19:537–541

    CAS  Google Scholar 

  • Arnaoutakis G, Gakamsky A (2015) Transmission and absorbance of liquid samples. Technical Report, Report number: TN_P10

  • ASTM (2008) Standard test method for determination of total solids in biomass, E1756-08. ASTM International, West Conshohocken

  • Audu IG, Ziegler-Devin I, Winter H, Bremer M, Hoffmann A, Fischer S, Laborie MP, Bross N (2017) Impact of ionic liquid 1-ethyl-3-methylimidazolium acetate mediated extraction on lignin features. Green Sustain Chem 7:114–140

    Article  CAS  Google Scholar 

  • Bae S, Shoda M (2005) Statistical optimization of culture conditions for bacterial cellulose production using Box–Behnken design. Biotechnol Bioeng 90:20–28

    Article  CAS  PubMed  Google Scholar 

  • Bezerra MA, Santelli RE, Oliveria EP, Villar LS, Escaleira LA (2008) Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76:965–977

    Article  CAS  PubMed  Google Scholar 

  • Boeriu CG, Bravo D, Gosselink RJA, Van Dam JEG (2004) Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy. Ind Crops Prod 20:205–218

    Article  CAS  Google Scholar 

  • Bonacci S, Gioia MLD, Costanzo P, Maiuolo L, Tallarico S, Nardi M (2020) Natural deep eutectic solvent as extraction media for the main phenolic compounds from olive oil processing wastes. Antioxidants 9:513–526

    Article  CAS  PubMed Central  Google Scholar 

  • Brehmer B (2008) Chemical biorefinery perspectives: the valorization of functionalized chemicals from biomass resources compared to the conventional fossil fuel production route. Doctoral thesis. Wageningen University, Netherlands

  • Bruijnincx PCA, Rinaldi R, Weckhuysen BM (2015) Unlocking the potential of a sleeping giant: lignins as sustainable raw materials for renewable fuels, chemicals and materials. Green Chem 17:4860–4861

    Article  CAS  Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose: theory and practice Chemical composition and structure of natural lignocellulose. Chemical Industry Press, Springer, Dordrecht Beijing

    Book  Google Scholar 

  • Chen Z, Wan C (2018) Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment. Bioresour Technol 250:532–537

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang L, Yu J, Lu Y, Jiang B, Fan Y, Wang Z (2019) High-purity lignin isolated from poplar wood meal through dissolving treatment with deep eutectic solvents. R Soc Open Sci 6:181757–181767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Ragauskas A, Wan C (2020) Lignin extraction and upgrading using deep eutectic solvents. Ind Crops Prod 47:112241

    Article  CAS  Google Scholar 

  • Cox BJ, Ekerdt JG (2012) Depolymerization of oak wood lignin under mild conditions using the acidic ionic liquid 1-H-3-methylimidazolium chloride as both solvent and catalyst. Bioresour Technol 118:584–588

    Article  CAS  PubMed  Google Scholar 

  • Cox BJ, Jia S, Zhang ZC, Ekerdt JG (2011) Catalytic degradation of lignin model compounds in acidic imidazolium based ionic liquids: hammett acidity and anion effects. Polym Degrad Stab 96:426–431

    Article  CAS  Google Scholar 

  • da Costa Lopes AM, Joao KJ, Rubik DF, Bogel-Łukasik B, Duarte LC, Andreaus J, Bogel-Lukasik R (2013) Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation. Bioresour Technol 142:198–208

    Article  PubMed  CAS  Google Scholar 

  • Dhingra DR, Bhatnagar MS, Nigam PC (1952) Lignin recovery from soda black liquor. Indian Pulp Paper 7:311–315

    CAS  Google Scholar 

  • D-optimal designs (Chapter 267) NCSS Statistical Software. https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/D-Optimal_Designs.pdf. Accessed on 30 July, 2020

  • Faris AH, Ibrahim MNM, Rahim A, Hussin MH, Brosse N (2015) Preparation and characterization of lignin polyols from the residues of oil palm empty fruit bunch. BioResources 10:7339–7352

    Article  CAS  Google Scholar 

  • Francisco M, Bruinhorst AV, Kroon MC (2012) New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing. Green Chem 14:2153–2157

    Article  CAS  Google Scholar 

  • Fu D, Mazza G, Tamaki Y (2010) Lignin extraction from straw by ionic liquids and enzymatic hydrolysis of the cellulosic residues. J Agric Food Chem 58:2915–2922

    Article  CAS  PubMed  Google Scholar 

  • Ghaffar SH, Fan M (2013) Structural analysis for lignin characteristics in biomass straw. Biomass Bioenergy 27:264–279

    Article  CAS  Google Scholar 

  • Hart WES, Harper JB, Aldous L (2015) The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem 17:214–218

    Article  CAS  Google Scholar 

  • Haynes W (2013) Tukey’s test. In: Dubitzky W, Wolkenhauer O, Cho KH, Yokota H (eds) Encyclopedia of systems biology. Springer, New York

    Google Scholar 

  • Hussien MHB (2018) Extraction, modification and characterization of lignin from oil palm fronds as corrosion inhibitors for mild steel in acidic solution. Doctoral thesis, University of Lorraine, France

  • Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. Chem Sus Chem 3:1078–1084

    Article  CAS  Google Scholar 

  • Khuri AI (2017) A general overview of response surface methodology. Biom Biostat Int J 5:87–93

    Google Scholar 

  • Kim JY, Shin EJ, Eom IY, Won K, Kim YH, Choi D, Choi I, Choi JW (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102:9020–9025

    Article  CAS  PubMed  Google Scholar 

  • Kim KH, Dutta T, Sun J, Simmons B, Singh S (2018) Biomass pretreatment using deep eutectic solvents from lignin derived phenols. Green Chem 20:809–815

    Article  CAS  Google Scholar 

  • Koo BW, Park N, Jeong HS, Choi JW, Yeo H, Choi I (2011) Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts. J Ind Eng Chem 17:18–24

    Article  CAS  Google Scholar 

  • Kumar H, Alen R (2014) Partial recovery of aliphatic carboxylic acids and sodium hydroxide from hardwood black liquor by electrodialysis. Ind Eng Chem Res 53:9464–9479

    Article  CAS  Google Scholar 

  • Kumar AK, Parikh BS, Pravakar M (2016a) Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res Int 23:9265–9275

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Alen R, Sahoo G (2016b) Characterization of hardwood soda-AQ lignins precipitated from black liquor through selective acidification. BioResources 11:9869–9879

    Article  CAS  Google Scholar 

  • Lalman JA, Shewa W, Gallagher J, Ravella S (2016) Biofuels production from renewable feedstocks. In: Lau PCK (ed) Quality living through chemurgy and green chemistry. Springer, New York

    Google Scholar 

  • Loewus FA (1952) Improvement in anthrone method for determination of carbohydrates. Anal Chem 24:219–219

    Article  CAS  Google Scholar 

  • Lynam JG, Kumar N, Wong MJ (2017) Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density. Bioresour Technol 238:684–689

    Article  CAS  PubMed  Google Scholar 

  • Malaeke H, Housaindokht MR, Monhemi H, Izadyar M (2018) Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification. J Mol Liq 263:193–199

    Article  CAS  Google Scholar 

  • Moghaddam L, Zhang Z, Wellard RM, Bartley J, O’Hara IM, Woherty DOS (2014) Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids. Biomass Bioenerg 70:498–512

    Article  CAS  Google Scholar 

  • Montogomery DC (2005) Design and analysis of experiments. Wiley, New York, pp 373–606

    Google Scholar 

  • Myer RH, Montogomery DC (2002) Response surface methodology: process and product optimization using designed experiment, 2nd edn. Wiley, New York, pp 343–350

    Google Scholar 

  • Ninomiya K, Inoue K, Aomori Y, Ohnishi A, Ogino C, Shimizu N, Takahashi K (2015) Characterization of fractionated biomass component and recovered ionic liquid during repeated process of cholinium ionic liquid-assisted pretreatment and fractionation. Chem Eng J 259:323–329

    Article  CAS  Google Scholar 

  • Ohman F, Theliander H (2007) Filtration properties of lignin precipitated from black liquor. TAPPI J 6:3–9

    Google Scholar 

  • Park CW, Youe WJ, Han SY, Kim YS, Lee SH (2017) Solubility of kraft lignin-g-polyacrylonitrile copolymer in various ionic liquids and characterization of its solution. Wood Sci Technol 51:151–163

    Article  CAS  Google Scholar 

  • Peng T, Ray S, Veeravalli SS, Lalman JA, Arefi-Khonsari F (2018) The role of hydrothermal conditions in determining 1D TiO2 nanomaterials bandgap energies and crystal phases. Mater Res Bull 105:104–113

    Article  CAS  Google Scholar 

  • Ponomarenko J, Dizhbite T, Lauberts M, Viksna A, Dobele G, Bikovens O, Telysheva G (2014) Characterization of softwood and hardwood LignoBoost Kraft lignins with emphasis on their antioxidant activity. BioResources 9:2051–2068

    Article  Google Scholar 

  • Popescu AM, Donath C, Constantin V (2014) Density, viscosity and electrical conductivity of three choline chloride based ionic liquids. Bulg Chem Commun 46:452–457

    Google Scholar 

  • Procentese A, Raganati F, Oliveri G, Russo ME, Rehmann L, Marzocchella A (2018) Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnol Biofuels 37:1–12

    Google Scholar 

  • Ralph J, Landucci LL (2010) NMR of lignins. In: Heitner C, Dimmel DR, Schmidt JA (eds) Lignin and lignans: advances in chemistry. CRC Press Taylor & Francis Group, New York

    Google Scholar 

  • Rashid T, Kait CF, Murugesan T (2016) A “Fourier transformed infrared” compound study of lignin recovered from a formic acid process. Procedia Eng 148:1312–1319

    Article  CAS  Google Scholar 

  • Ray S (2006) RSM: a statistical tool for process optimization. Ind Tex J 117:24–30

    Google Scholar 

  • Ray S, Lalman JA, Biswas N (2009) Using the Box–Benkhen technique to statistically model phenol photocatalytic degradation by titanium dioxide nanoparticles. Chem Eng J 150:15–24

    Article  CAS  Google Scholar 

  • Ren H, Chen C, Guo S, Zhao D, Wang Q (2016a) Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose. Bio Res 11:8457–8469

    CAS  Google Scholar 

  • Ren H, Chen C, Wang Q, Zhao D, Guo S (2016b) The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose. Bio Res 11:5435–5451

    CAS  Google Scholar 

  • Rosenthal G, Rosenthal J (2011) Statistics and data interpretation for social work. Springer, Berlin

    Google Scholar 

  • Saha K, Dasgupta J, Chakraborty S, Antunes FAF, Sikder J, Curcio S, Dos Santos JC, Arafat HA, Da Silva SS (2017) Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose 24:3191–3207

    Article  CAS  Google Scholar 

  • Salinaro A, Emeline AV, Zhao J, Hidaka H, Ryabchuk VK, Serpone N (1999) Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II. Experimental determination of quantum yields. Pure Appl Chem 71:321–325

    Article  CAS  Google Scholar 

  • Shu R, Zhang Q, Ma L, Xu Y, Chen P, Wang C, Wang T (2016) Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin. Bioresour Technol 221:568–575

    Article  CAS  PubMed  Google Scholar 

  • Sidik DAB, Ngadi N, Amin NAS (2013) Optimization of lignin production from empty fruit bunch via liquefaction with ionic liquid. Bioresour Technol 135:690–696

    Article  CAS  PubMed  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure (LAP). NREL Laboratory. Analytical procedures for standard biomass analysis

  • Stephens MA (1974) EDF statistics for goodness of fit and some comparisons. J Am Stat Soc 69:730–737

    Article  Google Scholar 

  • Su Y, Du R, Guo H, Cao M, Wu Q, Su R, Qi W, He Z (2015) Fractional pretreatment of lignocellulose by alkaline hydrogen peroxide: characterization of its major components. Food Bioprod Process 94:322–330

    Article  CAS  Google Scholar 

  • Suopajärvi T, Ricci P, Karvonen V, Ottolina G, Liimatainen H (2020) Acidic and alkaline deep eutectic solvents in delignification and nanofibrillation of corn stalk, wheat straw, and rapeseed stem residues. Ind Crops Prod 145:111956–111965

    Article  CAS  Google Scholar 

  • Talbot AB, Chen L, Dongen BEV, Welton T, Hallett JP (2015) Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem 17:5019–5034

    Article  CAS  Google Scholar 

  • Talbot AB, Gschwend FJV, Fennell PS, Lammens TM, Tan B, Weale J, Hallett JP (2017) An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chem 19:3078–3102

    Article  Google Scholar 

  • TAPPI T 222 om-02 (2001) TAPPI Test Methods. Atlanta, GA, USA

  • TAPPI UM 250 (1991) TAPPI Useful Methods. Atlanta, GA, USA

  • Wallberg O, Jonsson AS, Wimmerstedt R (2003) Fractionation and concentration of kraft black liquor lignin with ultrafiltration. Desalination 154:187–199

    Article  CAS  Google Scholar 

  • Wallmo H, Richards T, Theliander H (2009) An investigation of process parameters during lignin precipitation from kraft black liquors: a step towards an optimized precipitation operation. Nordic Pulp Paper Res J 24:158–164

    Article  CAS  Google Scholar 

  • Wang X, Li H, Cao Y, Tang Q (2011) Cellulose extraction from wood chip in an ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl). Biores Technol 102:7959–7965

    Article  CAS  Google Scholar 

  • Wang J, Li W, Wang H, Ma Q, Li S, Chang HM, Jameel H (2017) Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst. Bioresour Technol 243:100–106

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Li H, Xiao LP, Song G (2020) Unraveling the structural transformation of wood lignin during deep eutectic solvent treatment. Front Energy Res 8:1–10

    Google Scholar 

  • Yang H, Zheng X, Yao L, Gu R, Xie Y (2013) Elucidation of the bonds between cellulose and dehydrogenation polymer with carbon-13 isotopic tracer method. Cellul Chem Technol 47:143–151

    CAS  Google Scholar 

  • Yoon LW, Ang TN, Ngoh GC, Chua ASM (2012) Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes. Biomass Bioenerg 36:160–169

    Article  CAS  Google Scholar 

  • Zain MSC, Yeoh JX, Lee SY, Shaari K (2021) Physicochemical properties of choline chloride-based natural deep eutectic solvents (NaDES) and their applicability for extracting oil palm flavonoids. Sustainability 13:12981

    Article  CAS  Google Scholar 

  • Zawacki BE, Azen SP, Imbus SH, Chang YT (1979) Multifactorial probit analysis of mortality in burned patients. Ann Surg 189:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Hu J, Lee DJ (2017) Pretreatment of biomass using ionic liquids: research updates. Renew Energy 111:77–84

    Article  CAS  Google Scholar 

  • Zhao Z, Chen X, Ali MF, Abdeltawab AA, Yakout SM, Yu G (2018) Pretreatment of wheat straw using basic ethanolaminse-based deep eutectic solvents for improving enzymatic hydrolysis. Bioresour Technol 263:325–333

    Article  CAS  PubMed  Google Scholar 

  • Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas A, Dixon RA, Davis M (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa (medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 285:38961–38968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Professor Paul Henshaw assisted in the process of technical advice and review of the manuscript. Mr. Bill Middleton assisted with the FTIR and NMR analyses.

Funding

Financial support for this work was provided by the University of Windsor.

Author information

Authors and Affiliations

Authors

Contributions

FSGB and SR provided manuscript conception; FSGB did writing and original draft preparation, screening study, NMR analysis, data analysis and synthesis of solvents and characterization; SR performed FTIR analysis; FSGB, SR, TP were involved in BBD model; All authors have read and agreed to the submitted version of the manuscript.

Corresponding author

Correspondence to Fatemeh Saadat Ghareh Bagh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadat Ghareh Bagh, F., Ray, S. & Peng, T. Optimizing conditions for using deep eutectic solvents to extract lignin from black liquor. Wood Sci Technol 56, 759–792 (2022). https://doi.org/10.1007/s00226-022-01381-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-022-01381-2

Navigation