Skip to main content
Log in

Moisture-induced damage evolution in laminated beech

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

In a combined experimental, numerical, and analytical approach, damage onset and propagation in unidirectional and cross-laminated samples from European beech due to climatic changes are studied. The inter- and intra-laminar damage evolution is characterized for various configurations, adhesively bonded by three structural adhesive systems. Different lamella thicknesses are studied to capture size effects. Typical situations are simulated by means of a comprehensive moisture-dependent nonlinear rheological finite element model for wood with the capability to capture delaminations. The simulations give insight into the role of different strain components such as viscoelastic, mechano-sorptive, plastic, and hygro-elastic deformations under changing moisture content in progressive damage and delamination. The stress buildup under cyclic hygric loading was shown, resulting in hygro-fatigue. It was demonstrated that a modified analytical micro-mechanics of damage model, originally developed for cross-ply laminates, can be employed to describe the problem of moisture-induced damage in beech lamellae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • ABAQUS (2014) ABAQUS Documentation v. 6.14. Simulia. © Dassault Systèmes

  • Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50(7):1701–1736

    Article  Google Scholar 

  • Ammann S, Schlegel S, Beyer M, Jung H, Niemz P (2016) Quality assessment of glued ash wood for construction engineering. Eur J Wood Prod 74:67–74

    Article  CAS  Google Scholar 

  • de Borst R, Gutiérrez MA, Wells GN, Remmers JJC, Askes H (2004) Cohesive-zone models, higher-order continuum theories and reliability methods for computational failure analysis. Int J Numer Methods Eng 60(1):289–315

    Article  Google Scholar 

  • DIN EN 14080 (2013) Timber structures: glued laminated timber and glued solid timber: requirements; German version, DIN German Institute for Standardization

  • Fortino S, Mirianon F, Toratti T (2009) A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech Time-Depend Mater 13(4):333–356

    Article  Google Scholar 

  • Fortino S, Zagari G, Mendicino AL, Dill-Langer G (2012) A simple approach for FEM simulation of Mode I cohesive crack growth in glued laminated timber under short-term loading. J Struct Mech 45(1):1–20

    Google Scholar 

  • Gereke T (2009) Moisture-induced stresses in cross-laminated wood panels. PhD thesis, ETH Zurich

  • Hass P, Wittel FK, McDonald SA, Marone F, Stampanoni M, Herrmann HJ, Niemz P (2010) Pore space analysis of beech wood: the vessel network. Holzforschung 64(5):639–644

    Article  CAS  Google Scholar 

  • Hass P, Mendoza M, Wittel FK, Niemz P, Herrmann HJ (2012a) Inverse determination of effective mechanical properties of adhesive bondlines. Eur J Wood Prod 70:785–790

    Article  Google Scholar 

  • Hass P, Wittel FK, Mendoza M, Herrmann HJ, Niemz P (2012b) Adhesive penetration in Beech wood. Wood Sci Technol 46(1–3):243–256

    Article  CAS  Google Scholar 

  • Hass P, Wittel FK, Niemz P, Herrmann HJ (2013) Generic failure mechanisms in adhesive bonds. Holzforschung 67(2):207–215

    Article  CAS  Google Scholar 

  • Hassani MM, Wittel FK, Hering S, Herrmann HJ (2015) Rheological model for wood. Comput Methods Appl Mech 283:1032–1060

    Article  Google Scholar 

  • He MY, Evans AG, Hutchinson JW (1994) Crack deflection at an interface between dissimilar elastic materials: role of residual stresses. Int J Solids Struct 31(24):3443–3455

    Article  Google Scholar 

  • Hering S (2011) Characterization and modeling of material properties of beech wood for simulation of glued-laminated wood, PhD Thesis ETH No. 19903

  • Kläusler O, Clauß S, Lübke L, Trachsel J, Niemz P (2013) Influence of moisture on stress–strain behaviour of adhesives used for structural bonding of wood. Int J Adhes Adhes 44:57–65

    Article  Google Scholar 

  • Liu S, Nairn JA (1990) Fracture mechanics analysis of composite microcracking: experimental results in fatigue. In: Proceedings of the 5th technical conference on composite materials american society of composites, East Lansing, Michigan, June 11–14, pp 287–295

  • Mendoza M, Hass P, Wittel FK, Niemz P, Herrmann HJ (2012) Adhesive penetration of hardwood: a generic penetration model. Wood Sci Technol 46(1–3):529–549

    Article  CAS  Google Scholar 

  • Nairn JA (1989) The strain energy release rate of composite microcracking: a variational approach. J Compos Mater 23(11):1106–1129

    Article  Google Scholar 

  • Nairn JA, Hu S (1992) The initiation and growth of delaminations induced by matrix microcracks in laminated composites. Int J Fract 57(1):1–24

    Article  Google Scholar 

  • Nairn JA, Hu S (1994) Micromechanics of damage: a case study of matrix microcracking. In: Talreja R (ed) Damage mechanics of composite materials (Chapter 6), composite material series 9. Elsevier Science, Amsterdam, pp 187–243

    Google Scholar 

  • Qiu LP, Zhu EC, van de Kuilen JWG (2014) Modeling crack propagation in wood by extended finite element method. Eur J Wood Prod 72(2):273–283

    Article  Google Scholar 

  • River BH (2003) Fracture of adhesive-bonded wood joints. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, revised and expanded, 2nd edn. Taylor & Francis, London

    Google Scholar 

  • Serrano E (2000) Adhesive joints in timber engineering: modelling and testing of fracture properties. Technical report TVSM-1012, PhD thesis Lund University

  • Serrano E (2004) A numerical study of the shear-strength-predicting capabilities of test specimens for wood–adhesive bonds. Int J Adhes Adhes 24(1):23–35

    Article  CAS  Google Scholar 

  • Silva M, de Moura M, Morais J (2006) Numerical analysis of the ENF test for mode II wood fracture. Compos Part A-Appl S 37(9):1334–1344

    Article  Google Scholar 

  • Simon F, Valentin G (2003) Cohesive failure characterisation of wood adhesive joints loaded in shear. ESIS Publ 32:305–316

    CAS  Google Scholar 

  • Touati D, Cederbaum G (1997a) Stress relaxation of nonlinear thermoviscoelastic materials predicted from known creep. Mech Time-Depend Mater 1(3):321–330

    Article  Google Scholar 

  • Touati D, Cederbaum G (1997b) On the prediction of stress relaxation from known creep of nonlinear materials. J Eng Mater Technol 119(2):121–124

    Article  CAS  Google Scholar 

  • Volkmer T, Schmidt JA, Kranitz K, Niemz P (2012) Studies on the influence of the type of adhesive on the diffusion resistance of wood adhesives. Bauphysik 34(2):55–60

    Article  Google Scholar 

  • Wimmer R, Kläusler O, Niemz P (2013) Water sorption mechanisms of commercial wood adhesive films. Wood Sci Technol 47(4):763–775

    Article  CAS  Google Scholar 

  • Wittel FK, Kun F, Kröplin BH, Herrmann HJ (2003) A study of transverse ply cracking using a discrete element method. Comput Mater Sci 28(3–4):608–619

    Article  Google Scholar 

  • Wittel FK, Dill-Langer G, Kröplin BH (2005) Modeling of damage evolution in soft-wood perpendicular to grain by means of a discrete element approach. Comput Mater Sci 32(3–4):594–603

    Article  Google Scholar 

  • Zhang X, et al (2005) Comprehensive hygro-thermo-mechanical modeling and testing of stacked die BGA module with molded underfill. In: Proceedings of the 55th electronic components and technology conference (Lake Buena Vista, FL) 1:196–200

Download references

Acknowledgments

This work was funded by the Swiss National Science Foundation in the National Research Programme NRP 66—Resource Wood under Grant No. 406640-140002: Reliable timber and innovative wood products for structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Falk K. Wittel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, M.M., Wittel, F.K., Ammann, S. et al. Moisture-induced damage evolution in laminated beech. Wood Sci Technol 50, 917–940 (2016). https://doi.org/10.1007/s00226-016-0821-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-016-0821-5

Keywords

Navigation