Skip to main content
Log in

Optimized methods for obtaining cellulose and cellulose sulfates from birch wood

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

The methods of obtaining cellulose and cellulose sulfates from birch wood based on the use of one-step catalytic delignification of wood by hydrogen peroxide in acetic acid–water medium were studied. The conditions of birch wood oxidative delignification by acetic acid/hydrogen peroxide mixtures in the presence of sulfuric acid catalyst were optimized in order to obtain an acceptable yield of cellulose product with low content of residual lignin. Cellulose extracted from birch wood by green method was used for preparation of cellulose sulfates in dioxane solution. The homogeneous sulfation of obtained cellulose by chlorosulfonic acid in dioxane allows to reduce the fragmentation of polymer and to synthesize cellulose sulfates with a finer and more homogeneous structure as compared to cellulose sulfates prepared by heterogeneous sulfation in harmful pyridine. Obtained samples of cellulose and cellulose sulfates were characterized by XRD, SEM, AFM, NMR, FTIR, Raman, XPS and chemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Anderson RA, Feathergill KA, Diao XH, Cooper MD (2002) Preclinical evaluation of sodium cellulose sulfate (Ushercell) as a contraceptive antimicrobial agent. J Androl 23:426–438

    CAS  PubMed  Google Scholar 

  • Ardizzone S, Dioguardil F, Mussini T, Mussini P, Rondinini S, Vercelli B, Vertova A (1999) Microcrystalline cellulose powders: structure, surface features and water sorption capability. Cellulose 6:57–69

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Browning BL (1967) Methods of wood chemistry, vol. 1, 2. Interscience Publishers, New York

    Google Scholar 

  • Centi G, van Santen RA (eds) (2007) Catalysis for renewables. Willey, Weinheim

    Google Scholar 

  • Chen CL, Capanema EA, Gracz HS (2003) Reaction mechanisms in delignification of pine Kraft-AQ pulp with hydrogen peroxide using Mn(IV)-Me4DTNE as catalyst. J Agric Food Chem 51:1932–1941

    Article  CAS  PubMed  Google Scholar 

  • Cheng HN, Gross RA (eds) (2010) Green polymer chemistry, biocatalysis and biomaterials. ACS Symposium Series, Washington, DC

    Google Scholar 

  • Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46:7164–7183

    Article  CAS  Google Scholar 

  • Clark JH, Deswarte FEI (eds) (2008) Introduction to chemicals from biomass. Wiley, Chichester

    Google Scholar 

  • Das S, Lachenal D, Marlin N (2013) Production of pure cellulose from Kraft pulp by a totally chlorine-free process using catalyzed hydrogen peroxide. Ind Crops Prod 49:844–850

    Article  CAS  Google Scholar 

  • Evtugin DV, Parcoal NC (1997) New polyoxometalate promoted method of oxygen delignification. Holzforschung 51:338–342

    Article  Google Scholar 

  • Fengel D, Wegener G (1984) Wood: chemistry, ultrastructure, reaction. Walter de Gruyter, Berlin

    Google Scholar 

  • Gallezot P (2008) Catalytic conversion of biomass: challenges and issues. ChemSusChem 1:734–737

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Liebert T, Heinze T (2009) Interaction of ionic liquids with polysaccharides, 8—synthesis of cellulose sulfates suitable for polyelectrolyte complex. Macromol Biosci 9:343–353

    Article  CAS  PubMed  Google Scholar 

  • Gilbert EE (1965) Sulfonation and related reactions. Interscience Publishers, New York etc

    Google Scholar 

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulose ethanol. Biofuels Bioprod Biorefining 5:215–225

    Article  CAS  Google Scholar 

  • Hu F, Jang S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12

    Article  CAS  PubMed  Google Scholar 

  • Kamide K, Okajama K (1981) Determination of distribution of sodium sulfate group in glucopyranose units of sodium cellulose sulfate by 13C and 1H nuclear magnetic resonance analysis. Polym J 13:163–166

    Article  CAS  Google Scholar 

  • Kang GJ, Malekian A, Ni YH (2004) Formation of peracetic acid from hydrogen peroxide and pentaacetyl glucose to activate oxygen delignification, solutions. Tappi J 3:19–22

    CAS  Google Scholar 

  • Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV (2008) Catalytic properties of TiO2 in wood delignification by acetic acid—hydrogen peroxide mixture. React Kinet Catal Lett 94:311–317

    Article  CAS  Google Scholar 

  • Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV (2009) Influence of UV pretreatment on the abies wood catalytic delignification in the medium acetic acid—hydrogen peroxide—TiO2. React Kinet Catal Lett 97:295–300

    Article  CAS  Google Scholar 

  • Kuznetsov BN, Kuznetsova SA, Danilov VG, Yatsenkova OV, Petrov AV (2011a) A green one-step process of obtaining microcrystalline cellulose by catalytic oxidation of wood. React Kinet Mech Catal 104:337–343

    Article  CAS  Google Scholar 

  • Kuznetsov BN, Sudakova IG, Celzard A, Garyntseva NV, Ivanchenko NM, Petrov AV (2011b) Binding properties of lignins obtained at oxidative catalytic delignification of wood and straw. J Sib Fed Univ Chem 4:3–10

    CAS  Google Scholar 

  • Kuznetsova SA, Danilov VG, Kuznetsov BN, Yatsenkova OV, Alexandrova NB, Shambasov VK, Pavlenko NI (2003) Environmentally friendly catalytic production of cellulose by abies wood delignification in “acetic acid—hydrogen peroxide—water” media. Chem Sustain Dev 11:141–148

    CAS  Google Scholar 

  • Lucas M, Hanson SK, Wagner GL, Kimball DB, Rector KD (2012) Evidence for room temperature delignification of wood using hydrogen peroxide and manganese acetate as a catalyst. Bioresour Technol 119:174–180

    Article  CAS  PubMed  Google Scholar 

  • Mac Leod JM (1987) Alkaline sulphite-anthraquinone pulps from softwoods. J Pulp Pap Sci 13:44–49

    Google Scholar 

  • Neson V (2011) Introduction to renewable energy. CRC Press, Boca Raton

    Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  PubMed  Google Scholar 

  • Pario JC, Alonso JV, Santos V (1995) Kinetics of catalyzed organosolv processing of pine wood. Ind Eng Chem Res 12:4333–4342

    Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Jonson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol Biofuels 3:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Peschel D, Zhang K, Aggarwal N, Brendler E, Fischer S, Groth T (2010) Synthesis of novel celluloses derivatives and investigation of their mitogenic activity in the presence and absence of FGF2. Acta Biomater 6:2116–2125

    Article  CAS  PubMed  Google Scholar 

  • Popplius-Levlin K, Mustonen R, Muovila T, Sundquist J (1991) Milox pulping with acetic acid-peroxyacetic acid. Paperi ja Puu 73:154–158

    Google Scholar 

  • Simoes JA, Citron DM, Aroutcheva A, Anderson RA, Zaneveld LJD (2002) Two novel vaginal microbicides (polystyrene sulfonate and cellulose sulfate) inhibit Gardnerella vaginalis and anaerobes commonly associated with bacterial vaginosis. J Antimicrob Chemother 8:2692–2695

    Article  Google Scholar 

  • Sundquist J (1996) Chemical pulping based on formic acid: summary of milox research. Paperi ja Puu 78:92–95

    CAS  Google Scholar 

  • Vasiliu-Oprea C, Nicoleanu J (1993) Micronized (and microcrystalline) celluloses. Obtainment and fields of application. Polym Plast Technol Eng 32:181–214

    Article  CAS  Google Scholar 

  • Vourinen T (1993) The role of carbohydrates in alkali anthraquinone pulping. J Wood Chem Technol 13:97–125

    Article  Google Scholar 

  • Wang ZM, Li L, Zheng BS, Normakhamatov N, Guo SY (2007) Preparation and anticoagulation activity of sodium cellulose sulfate. Int J Biol Macromol 41:376–382

    Article  CAS  PubMed  Google Scholar 

  • Wang ZM, Li L, Xiao K-J, Wu J-Y (2009) Homogeneous sulfation of bagasse cellulose in an ionic liquid and anticoagulation activity. Bioresour Technol 100:1687–1690

    Article  CAS  PubMed  Google Scholar 

  • Weinstock LA, Atalla RH, Reiner R, Moen MA, Hammel KE, Hutman CJ, Hill CL, Harrup MK (1997) A new environmentally benign technology for transforming wood pulp into paper. Engineering polyoxometalates as catalysts for multiple processes. J Mol Catal A 116:59–84

    Article  CAS  Google Scholar 

  • Yamomoto I, Takayama K, Honma K, Gonda T, Matsuzaki K, Uryu T, Yoshida O, Nakashima H, Yamamoto N, Kaneko Y, Mimura T (1991) Synthesis, structure and antiviral activity of sulfates of cellulose and its branched derivatives. Carbohydr Polym 14:53–63

    Article  Google Scholar 

  • Yao S (1998) Study on biocompatibility in a new biomicrocapsule system. J Chin Biotechnol 14:193–197

    CAS  Google Scholar 

  • Yao S (2000) An improved process for the preparation of sodium cellulose sulphate. Chem Eng J 78:199–204

    Article  CAS  Google Scholar 

  • Zhang K, Brendler E, Fischer S (2010) FT Raman investigation of sodium cellulose sulfate. Cellulose 17:427–435

    Article  Google Scholar 

  • Zhang K, Brendler E, Geissler A, Fischer S (2011a) Synthesis and spectroscopic analysis of cellulose sulfates with regulable total degrees of substitution and sulfation patterns via 13C NMR and FT Raman spectroscopy. Polymer 52:26–32

    Article  CAS  Google Scholar 

  • Zhang K, Peschel D, Bäucker E, Groth T, Fischer S (2011b) Synthesis and characterisation of cellulose sulfates regarding the degrees of substitution, degrees of polymerisation and morphology. Carbohydr Polym 83:1659–1664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The reported study was partially supported by RFBR, research Project No 12-03-93117 and Ministry of Education and Science RF (Project RFMEFI607 14 X0031). This work is part of the GDRI “Catalytic biomass valorization” between France and Russia. The authors thank Dr. A.S. Romanenko, Dr. A.S. Krylov, I.V. Korolkova and V.F. Kargin for AFM, FT Raman, FT-IR, SEM analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris N. Kuznetsov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsov, B.N., Kuznetsova, S.A., Levdansky, V.A. et al. Optimized methods for obtaining cellulose and cellulose sulfates from birch wood. Wood Sci Technol 49, 825–843 (2015). https://doi.org/10.1007/s00226-015-0723-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-015-0723-y

Keywords

Navigation