Skip to main content
Log in

Preparation of cyclodextrin grafting wood flour and investigation of the release characteristics of eugenol

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Poplar wood flour, a low-cost and abundantly available material, was modified by grafting β-cyclodextrin (β-CD) in the presence of citric acid or 1,2,3,4-Butanetetracarboxylic acid, aiming to expand the application of wood flour. The products were characterized by Fourier transform infrared spectroscopy and the technique of phenolphthalein probe. The grafting conditions of β-CD onto wood flour including curing temperature, β-CD concentration in impregnation solution and catalyst were also evaluated by the technique of phenolphthalein probe. Besides, eugenol (EG), an antibacterial fragrant guest molecule, was loaded on the modified wood flour by lyophilization, and its release characteristics were investigated by Thermo-gravimetric. The results revealed that the modified wood flour material had a thermo-protective effect on the volatilization of EG and the encapsulated EG content was reached to 1.31 %, which could demonstrate a potential application in the finishing and packing areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bächle H, Zimmer B, Windeisen E, Wegener G (2010) Evaluation of thermally modified beech and spruce wood and their properties by FT-NIR spectroscopy. Wood Sci Technol 44(3):421–433

    Article  Google Scholar 

  • Butylina S, Martikka O, Kärki T (2011) Properties of wood fibre-polypropylene composites: effect of wood fibre source. Appl Compos Mater 18(2):101–111

    Article  CAS  Google Scholar 

  • Dányádi L, Móczó J, Pukánszky B (2010) Effect of various surface modifications of wood flour on the properties of PP/wood composites. Compos Part A-Appl S 41(2):199–206

    Article  Google Scholar 

  • De Bergamasco RC, Zanin GM, De Moraes FF (2007) Grafting of cyclodextrins onto filter paper. J Incl Phenom Macrocycl Chem 57(1–4):75–78

    Article  CAS  Google Scholar 

  • Fernández M, Fragoso A, Cao R, Baños M, Ansorge-Schumacher M, Hartmeier W, Villalonga R (2004) Functional properties and application in peptide synthesis of trypsin modified with cyclodextrin-containing dicarboxylic acids. J Mol Catal B-Enzym 31(1–3):47–52

    Article  Google Scholar 

  • Filson P, Dawson-Andoh BE, Matuana L (2009) Colorimetric and vibrational spectroscopic characterization of weathered surfaces of wood and rigid polyvinyl chloride-wood flour composite lumber. Wood Sci Technol 43(7–8):669–678

    Article  CAS  Google Scholar 

  • Freeman R, Finder T, Bahshi LL, Willner I (2009) β-Cyclodextrin-modified CdSe/ZnS quantum dots for sensing and chiroselective analysis. Nano Lett 9(5):2073–2076

    Article  PubMed  CAS  Google Scholar 

  • Han X, Yao T, Liu Y, Larock RC, Armstrong DW (2005) Separation of chiral furan derivatives by liquid chromatography using cyclodextrin-based chiral stationary phases. J Chromatogr A 1063(1–2):111–120

    PubMed  CAS  Google Scholar 

  • Hedges AR (1998) Industrial applications of cyclodextrins. Chem Rev 98(5):2035–2044

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Xing Y, Yu Y, Shang S, Dai J (2011) Enhanced washing durability of hydrophobic coating on cellulose fabric using polycarboxylic acids. Appl Surf Sci 257(9):4443–4448

    Article  CAS  Google Scholar 

  • Jia D, Dai J, Yuan H, Lei L, Xiao D (2011) Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly(luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta 85(5):2344–2351

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Zhang HY, Liu Y (2010) Synthesis of β-cyclodextrin-modified carbon nanocrystals and their fluorescent behavior. Chin Sci Bull 55(25):2835–2839

    Article  CAS  Google Scholar 

  • Kant A, Linforth RST, Hort J, Taylor AJ (2004) Effect of β-cyclodextrin on aroma release and flavor perception. J Agric Food Chem 52(7):2028–2035

    Article  PubMed  CAS  Google Scholar 

  • Kazemi-Najafi S, Kiaeifar A, Tajvidi M, Hamidinia E (2008) Hygroscopic thickness swelling rate of composites from sawdust and recycled plastics. Wood Sci Technol 42(2):161–168

    Article  CAS  Google Scholar 

  • Kord B, Hemmasi AH, Ghasemi I (2011) Properties of PP/wood flour/organomodified montmorillonite nanocomposites. Wood Sci Technol 45(1):111–119

    Article  CAS  Google Scholar 

  • Lai X, Tang W, Ng SC (2011) Novel β-cyclodextrin chiral stationary phases with different length spacers for normal-phase high performance liquid chromatography enantioseparation. J Chromatogr A 1218(22):3496–3501

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Yu ZL, Zhang YM, Guo DS, Liu YP (2008) Supramolecular architectures of β-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation. J Am Chem Soc 130(31):10431–10439

    Article  PubMed  CAS  Google Scholar 

  • Martin Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Article  Google Scholar 

  • Na N, Hu Y, Ouyang J, Baeyens WRG, Delanghe JR, Taes YEC, Xie M, Chen H, Yang Y (2006) On the use of dispersed nanoparticles modified with single layer β-cyclodextrin as chiral selecor to enhance enantioseparation of clenbuterol with capillary electrophoresis. Talanta 69(4):866–872

    Article  PubMed  CAS  Google Scholar 

  • Nuchuchua O, Saesoo S, Sramala I, Puttipipatkhachorn S, Soottitantawat A, Ruktanonchai U (2009) Physicochemical investigation and molecular modeling of cyclodextrin complexation mechanism with eugenol. Food Res Int 42(8):1178–1185

    Article  CAS  Google Scholar 

  • Rekharsky MV, Inoue Y (1998) Complexation thermodynamics of cyclodextrins. Chem Rev 98(5):1875–1917

    Article  PubMed  CAS  Google Scholar 

  • Rekharsky MV, Goldberg RN, Schwarz FP, Tewari YB, Ross PD, Yamashoji Y, Inoue Y (1995) Thermodynamic and nuclear magnetic resonance study of the interactions of α- and β-cyclodextrin with model substances: phenethylamine, ephedrines, and related substances. J Am Chem Soc 117(34):8830–8840

    Article  CAS  Google Scholar 

  • Roffael E, Johnsson B, Engström B (2010) On the measurement of formaldehyde release from low-emission wood-based panels using the perforator method. Wood Sci Technol 44(3):369–377

    Article  CAS  Google Scholar 

  • Szejtli J (1996) Cyclodextrins. In: Atwood JL, Lehn J-M (eds) Comprehensive supramolecular chemistry. Pergamon, Oxford, pp 6–36

    Google Scholar 

  • Wang T, Li B, Si H, Lin L (2011a) Investigation on surface activity of cyclodextrins grafting cellulose beads through phenolphthalein probe molecule. Surf Interface Anal 43(12):1532–1538

    Article  CAS  Google Scholar 

  • Wang T, Li B, Si H, Lin L, Chen L (2011b) Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J Incl Phenom Macrocycl Chem 71(1–2):207–213

    Article  CAS  Google Scholar 

  • Wang X, Zhou X, Wu L, Zhang J, Li X (2011c) Influence of esterification crosslinking structures of rayon fibers with 1,2,3,4-butanetetracarboxylic acid on tensile properties. J Appl Polym Sci 121(6):3553–3559

    Article  CAS  Google Scholar 

  • Wu S, Wang T, Gao Z, Xu H, Zhou B, Wang C (2008) Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline. Biosens Bioelectron 23(12):1776–1780

    Article  PubMed  CAS  Google Scholar 

  • Yagci Y, Jockusch S, Turro NJ (2010) Photoinitiated polymerization: advances, challenges, and opportunities. Macromolecules 43(15):6245–6260

    Article  CAS  Google Scholar 

  • Yang CQ (1993) Infrared spectroscopy studies of the effects of the catalyst on the ester crosslinking of cellulose by poly(carboxylic acids). J Appl Polym Sci 50(12):2047–2053

    Article  CAS  Google Scholar 

  • Yang CQ, Wang X (1996) Infrared spectroscopy studies of the cyclic anhydride as the intermediate for the ester crosslinking of cotton cellulose by polycarboxylic acids. II. Comparison of different polycarboxylic acids. J Polym Sci, Part A: Polym Chem 34(8):1573–1580

    Article  CAS  Google Scholar 

  • Yang CQ, Xu L, Li S, Jiang Y (1998) Nonformaldehyde durable press finishing of cotton fabrics by combining citric acid with polymers of maleic acid. Textile Res J 68(6):457–464

    Article  CAS  Google Scholar 

  • Yang CQ, Wang X, Lu Y (2000) Infrared Spectroscopy Studies of Cyclic anhydrides as intermediates for ester crosslinking of cotton cellulose by polycarboxylic acids. IV. In situ free radical copolymerization of maleic acid and itaconic acid on cotton. J Appl Polym Sci 75(2):327–336

    Article  CAS  Google Scholar 

  • Zhang G, Long W (2010) A key review on energy analysis and assessment of biomass resources for a sustainable future. Energy Policy 38(6):2948–2955

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by National Natural Science Fund of China (NSFC, NO. 30972423) and Fundamental Research Funds for the Central Universities (DL11BB02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, H., Li, B., Wang, T. et al. Preparation of cyclodextrin grafting wood flour and investigation of the release characteristics of eugenol. Wood Sci Technol 47, 601–613 (2013). https://doi.org/10.1007/s00226-012-0520-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-012-0520-9

Keywords

Navigation