Skip to main content
Log in

Production of hemicellulosic sugars from Pinus pinaster wood by sequential steps of aqueous extraction and acid hydrolysis

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

Pinus pinaster wood samples were subjected to aqueous extraction at 130°C to remove extractives and to a sequential stage of hydrothermal processing under selected operational conditions to obtain hemicelluloses-free solids and liquors containing hemicelluloses-derived products (mainly oligomeric saccharides and monosaccharides). Liquors were separated from the media, supplemented with sulfuric acid (4%), and heated to cause the posthydrolysis of oligomeric saccharides to yield hemicellulosic sugars. The effects of the major operational conditions on the yields of the target products were assessed in selected experiments. The considered process enabled the recovery of hemicellulosic sugars (mannose, glucose, xylose, and galactose) at almost quantitative yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abatzoglou N, Chornet E, Belkacemi K, Overend RP (1992) Phenomenological kinetics of complex systems: the development of a generalized severity parameter and its application to lignocellulosics fractionation. Chem Eng Sci 47:1109–1112

    Article  CAS  Google Scholar 

  • Amidon TE, Shijie L (2009) Water-based woody biorefinery. Biotechnol Adv 27:542–550

    Article  PubMed  CAS  Google Scholar 

  • Bajus M (2008) Biofuels second generation. Pet Coal 50:27–48

    CAS  Google Scholar 

  • Ballesteros I, Oliva JM, Navarro AA, Gonzalez A, Carrasco J, Ballesteros M (2000) Effect of chip size on steam explosion pretreatment of softwood. Appl Biochem Biotechnol 84–86:97–110

    Article  PubMed  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative determination of uronic acids. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  • Boussaid A, Cai Y, Robinson J, Gregg DJ, Nguyen Q, Saddler JN (2001) Sugar recovery and fermentability of hemicellulose hydrolysates from steam-exploded softwoods containing bark. Biotechnol Prog 17:887–892

    Article  PubMed  CAS  Google Scholar 

  • Brasch DJ (1983) The chemistry of Pinus radiata. VI. The water-soluble galactoglucomannan. Aust J Chem 36:947–954

    Article  CAS  Google Scholar 

  • Briens C, Piskorz J, Berruti F (2008) Biomass valorization for fuel and chemicals production—a review. Int J Chem React Eng 6:R2

    Google Scholar 

  • Casebier RL, Hamilton JK, Hergert HL (1969) Chemistry and mechanism of water prehydrolysis of southern pine wood. TAPPI J 52:2369–2377

    CAS  Google Scholar 

  • Chandra RP, Ewanick SM, Chung PA, Au-Yeung K, Del Rio L, Mabee W, Saddler JN (2009) Comparison of methods to assess the enzyme accessibility and hydrolysis of pretreated lignocellulosic substrates. Biotechnol Lett 31:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Zhu S (2009) Lignocellulosic feedstock biorefinery—the future of the chemical and energy industry. BioResources 4:456–457

    CAS  Google Scholar 

  • Clark JH (2007) Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass. J Chem Technol Biotechnol 82:603–609

    Article  CAS  Google Scholar 

  • Ebringerova A (2006) Structural diversity and application potential of hemicelluloses. Macromol Symp 232:1–12

    Article  CAS  Google Scholar 

  • Ebringerova A, Hromádková Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  CAS  Google Scholar 

  • Frederick WJ, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, Iisa K (2008) Production of ethanol from carbohydrates from loblolly pine: A technical and economic assessment. Bioresour Technol 99:5051–5057

    Article  PubMed  CAS  Google Scholar 

  • Gaiolas C, Duarte AP, Belgacem MN, Simoes R (2004) Determination of sugars content in Pinus pinaster and its corresponding polysaccharide complex and kraft pulps. Cellul Chem Technol 38:11–19

    CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  PubMed  CAS  Google Scholar 

  • Garrote G, Parajó JC (2002) Non-isothermal autohydrolysis of Eucalyptus wood. Wood Sci Technol 36:111–123

    Article  CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999a) Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol 74:1101–1109

    Article  CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (1999b) Hydrothermal processing of lignocellulosic materials. Holz Roh Werkst 57:191–202

    Article  CAS  Google Scholar 

  • Garrote G, Domínguez H, Parajó JC (2001) Kinetic modelling of corncob autohydrolysis. Process Biochem 36:571–578

    Article  CAS  Google Scholar 

  • Gupta S, Madan RN, Bansal MC (1987) Chemical composition of Pinus caribaea hemicellulose. TAPPI J 70:113–114

    CAS  Google Scholar 

  • Hoffmann GC, Timell TE (1970) Isolation and characterization of a galactoglucomannan from red pine (Pinus resinosa) wood. TAPPI J 53:1896–1899

    CAS  Google Scholar 

  • Jenkins T (2008) Toward a biobased economy: examples from the UK. Biofuels Bioprod Biorefin 2:133–143

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2007) The concept of a biorefinery—production of platform chemicals and final products. Chem Eng Tech 79:592–603

    CAS  Google Scholar 

  • Kamm B, Schoenicke P, Kamm M (2009) Biorefining of green biomass—technical and energetic considerations. Clean Soil Air Water 37:27–30

    Article  CAS  Google Scholar 

  • Koell P, Lenhardt H (1987) Degradation of hemicellulose—rich biological materials with water in a flow reactor. Makromol Chem 188:749–762

    Article  CAS  Google Scholar 

  • Lee JY, Kim YC, Do GH, Cho NS (1984) Studies on the pinus species hemicellulose in Korea (II). Structures of xylan and glucomannan. Polpu, Chongi Gisul 16:3–9

    CAS  Google Scholar 

  • Leschinsky M, Zuckerstaetter G, Weber HK, Patt R, Sixta H (2008) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 2: Influence of autohydrolysis intensity. Holzforschung 62:653–658

    Article  CAS  Google Scholar 

  • Lindblad MS, Liu Y, Albertsson AC, Ranucci E, Karlsson S (2002) Polymers from renewable resources. Adv Polym Sci 157:139–161

    Article  CAS  Google Scholar 

  • Marzialetti T, Valenzuela Olarte MB, Sievers C, Hoskins TJC, Agrawal PK, Jones CW (2008) Dilute acid hydrolysis of loblolly pine: a comprehensive approach. Ind Eng Chem Res 47:7131–7140

    Article  CAS  Google Scholar 

  • Negro MJ, Manzanares P, Oliva JM, Ballesteros I, Ballesteros M (2003) Changes in various physical/chemical parameters of Pinus pinaster wood after steam explosion pretreatment. Biomass Bioenerg 25:301–308

    Article  CAS  Google Scholar 

  • Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664

    Article  PubMed  CAS  Google Scholar 

  • Parajó JC, Vázquez D, Alonso JL, Santos V (1993) Optimization of catalysed acetosolv fractionation of pine wood. Holzforschung 47:188–196

    Article  Google Scholar 

  • Parajó JC, Santos V, Del Rio F (1995a) Hydrolysis of the hemicellulosic fraction of Pinus pinaster wood. I. Kinetics and product distribution at atmospheric pressure. Afinidad 52:162–169

    Google Scholar 

  • Parajó JC, Santos V, Del Rio F (1995b) Hydrolysis of the hemicellulosic fraction of Pinus pinaster wood. II. Production at higher pressures. Afinidad 52:267–274

    Google Scholar 

  • Richards GN, Whistler RL (1973) Isolation of two pure polysaccharides from the hemicellulose of slash pine (Pinus elliottii). Carbohydr Res 31:47–55

    Article  CAS  Google Scholar 

  • Sanders JPM, Annevelink B, van der Hoeven D (2009) The development of biocommodities and the role of North West European ports in biomass chains. Biofuels Bioprod Biorefin 3:395–409

    Article  CAS  Google Scholar 

  • Shahbazi A, Li Y, Mims MR (2005) Application of sequential aqueous steam treatments to the fractionation of softwood. Appl Biochem Biotechnol 121–124:973–987

    Article  PubMed  Google Scholar 

  • Stocker M (2008) Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials. Angew Chem Int Ed 4:9200–9211

    Article  Google Scholar 

  • Tu M, Zhang X, Paice M, McFarlane P, Saddler JN (2009) Effect of surfactants on separate hydrolysis fermentation and simultaneous saccharification fermentation of pretreated lodgepole pine. Biotechnol Prog 25:1122–1129

    Article  PubMed  CAS  Google Scholar 

  • Uihlein A, Schebek L (2009) Environmental impacts of a lignocellulose feedstock biorefinery system: an assessment. Biomass Bioenerg 33:793–802

    Article  CAS  Google Scholar 

  • Vila C, Garrote G, Domínguez H, Parajó JC (2002) Hydrolytic processing of rice husks in aqueous media: a kinetic assessment. Collect Czech Chem Commun 67:509–530

    Article  CAS  Google Scholar 

  • Wigell A, Brelid H, Theliander H (2007a) Degradation/dissolution of softwood hemicellulose during alkaline cooking at different temperatures and alkali concentrations. Nord Pulp Pap Res J 22:488–494

    Article  CAS  Google Scholar 

  • Wigell A, Brelid H, Theliander H (2007b) Kinetic modelling of (galacto) glucomannan degradation during alkaline cooking of softwood. Nord Pulp Pap Res J 22:495–499

    Article  CAS  Google Scholar 

  • Willför S, Sundberg K, Tenkanen M, Holmbom B (2008) Spruce-derived mannans–A potential raw material for hydrocolloids and novel advanced natural materials. Carbohydr Polym 72:197–210

    Article  Google Scholar 

  • Yañez R, Romaní A, Garrote G, Alonso JL, Parajó JC (2009) Processing of Acacia dealbata in aqueous media: a first step of wood biorefinery. Ind Eng Chem Res 48:6618–6626

    Article  Google Scholar 

  • Yoon SH, Macewan K, Van Heiningen A (2008) Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery. TAPPI J 7:27–32

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Spanish “Ministry of Science and Innovation” and to “Xunta de Galicia” for supporting this study, in the framework of the research Projects “Properties of new prebiotic food ingredients derived from hemicelluloses” (reference AGL2008-02072, which was partially funded by the FEDER Program of the European Union), and “Hemicellulosic bioethanol: compatibility with the kraft process” (reference 09REM003383PR). The excellent technical work of Mr. Carlos Rodríguez is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Parajó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Muñoz, M.J., Alvarez, R., Santos, V. et al. Production of hemicellulosic sugars from Pinus pinaster wood by sequential steps of aqueous extraction and acid hydrolysis. Wood Sci Technol 46, 271–285 (2012). https://doi.org/10.1007/s00226-011-0408-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-011-0408-0

Keywords

Navigation