Skip to main content
Log in

Polymerisation of added coniferyl alcohol by inherent xylem peroxidases and its effect on fungal decay resistance of Norway spruce

  • ORIGINAL
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

It is known that active peroxidase isozymes exist in mature wood of Norway spruce (Picea abies L. Karst.) and that they remain active for years and are found even in the heartwood (in Scots pine), where all cellular activity has ceased. This peroxidase activity was utilised in the impregnation of wood blocks with a natural monolignol, coniferyl alcohol and hydrogen peroxide. The hypothesis was that the internal wood peroxidases would oxidise the added monolignol and bind it stably into the cell wall matrix, which could hinder fungal decay. Since coniferyl alcohol is not very soluble in water, the impregnation was done under vacuum with an acetone–water solution containing 10% coniferyl alcohol and 0.4 mM H2O2 at room temperature (ca. 0.02 g of coniferyl alcohol was added to 1 g of wood). After impregnation, dimers of coniferyl alcohol and free coniferyl alcohol were found in acetone extracts with GC–MS analysis. Penetration of coniferyl alcohol and non-extractable reaction products were studied from the wood blocks with FTIR PAS technique. The wood samples treated were also subjected to a fungal decay test with Coriolus versicolor. This treatment hindered fungal decay in a 60-day experiment and led to a dry weight loss of 8.8% in comparison with 19.9% in the control. The reactions of coniferyl alcohol and H2O2 in the presence of peroxidases are discussed as well as the use of monolignols to increase wood decay resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ämmälahti E, Brunow G (2000) Use of β-13C labelled coniferyl alcohol to detect “end-wise” polymerization in the formation of DHPs. Holzforschung 54:604–608

    Article  Google Scholar 

  • Anttonen S, Manninen A-M, Saranpää P, Kainulainen P, Linder S, Vapaavuori E (2002) Effects of long-term nutrient optimisation on stem wood chemistry in Picea abies. Trees 16:386–394

    Article  CAS  Google Scholar 

  • Bao W, O’Malley DM, Whetten R, Sederoff RR (1993) A laccase associated with lignification in loblolly pine xylem. Science 260:672–674

    Article  CAS  PubMed  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Brolin A, Norén A, Ståhl EG (1995) Wood and pulp characteristics of juvenile Norway spruce: a comparison between a forest and an agricultural stand. Tappi J 78(2):203–214

    CAS  Google Scholar 

  • Brunow G, Kilpeläinen I, Sipilä J, Syrjänen K, Karhunen P, Setälä H, Rummakko P (1998a) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis NG, Sarkanen S (eds) ACS symposium series 697, lignin and lignan biosynthesis. American Chemical Society, Washington, pp 131–236

  • Brunow G, Raiskila S, Sipilä J (1998b) The incorporation of 3,4-dichloroaniline, a pesticide metabolite, into dehydrogenation polymers of coniferyl alcohol (DHPs). Acta Chem Scand 52:1338–1342

    Article  CAS  Google Scholar 

  • Brunow G, Ämmälahti E, Niemi T, Sipilä J, Simola LK, Kilpeläinen I (1998c) Labelling of a lignin from suspension cultures of Picea abies. Phytochemistry 47:1495–1500

    Article  CAS  Google Scholar 

  • Brunow G, Raiskila S, Björk H (2002) The incorporation of 3,4-dichloroaniline, a pesticide metabolite, into dehydrogenation polymers of coniferyl alcohol (DHPs) part 2 identification of a dimeric adduct. Holzforschung 56:73–75

    Article  CAS  Google Scholar 

  • Christensen JH, Bauw G, Welinder KG, Van Montagu M, Boerjan W (1998) Purification and characterization of peroxidases correlated with lignification in poplar xylem. Plant Physiol 118:125–135

    Article  PubMed  CAS  Google Scholar 

  • Christensen JH, Overney S, Rohde A, Diaz WA, Bauw G, Simon P, Van Montagu M, Boerjan W (2001) The syringaldazine-oxidizing peroxidase PXP 3–4 from poplar xylem: cDNA isolation, characterization and expression. Plant Mol Biol 47:581–593

    Article  PubMed  CAS  Google Scholar 

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin Heidelberg New York, pp 33–61

    Google Scholar 

  • Diaz-De-Leon F, Klotz KL, Lagrimini LM (1993) Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene. Plant Physiol 101:1117–1118

    Article  PubMed  CAS  Google Scholar 

  • Elfstrand M, Fossdal CG, Sitbon F, Olsson O, Lönneborg A, von Arnold S (2001) Overexpression of endogenous peroxidase-like gene spi 2 in transgenic Norway spruce plants results in increased total peroxidase activity and reduced growth. Plant Cell Rep 20:596–603

    Article  CAS  Google Scholar 

  • El Mansouri I, Mercado JA, Santiago-Dómenech N, Pliego-Alfaro F, Valpuesta V, Quesada MA (1999) Biochemical and phenotypical characterization of transgenic tomato plants overexpressing a basic peroxidase. Physiol Plant 106:355–362

    Article  CAS  Google Scholar 

  • EN 113 (1996) Wood preservatives-test method for determining the protective effectiveness against wood destroying basidiomycetes-determination of the toxic values. European Committee for Standardization, Brussels, p 31

  • Eriksson KE, Pettersson B (1975) Extracellular enzyme system utilized by the fungus Sporotrichum pulverulentum (Chrysosporium lignorum) for the breakdown of cellulose 1 separation, purification and physico-chemical characterization of five endo-1,4-beta-glucanases. Eur J Biochem 51:193–206

    Article  PubMed  CAS  Google Scholar 

  • Fagerstedt K, Saranpää P, Piispanen R (1998) Peroxidase activity, isoenzymes and histological localisation in sapwood and heartwood of Scots pine (Pinus sylvestris L.). J For Res 3:43–47

    Google Scholar 

  • Fossdal CG, Sharma P, Lönneborg A (2001) Isolation of the first putative peroxidase cDNA from a conifer and the local and systemic accumulation of related proteins upon pathogen infection Plant Mol Biol 47:423–435

    Article  PubMed  CAS  Google Scholar 

  • Furtmüller P, Stelzer D, Burner U, Obinger C, Ebermann R (1996) Isolation and characterization of six peroxidase isoenzymes from wood of Fagus sylvatica. In: Obinger C, Burner U, Ebermann R, Penel C, Greppin H (eds) Plant peroxidases. Biochemistry and physiology. IV international symposium proceedings, pp 124–127

  • Hafrén J, Westermark U, Lennholm H, Terashima N (2002) Formation of 13C-enriched cell-wall DHP using isolated soft xylem from Picea abies. Holzforschung 56:585–591

    Article  Google Scholar 

  • Harju AM, Venäläinen M, Anttonen S, Viitanen H, Kainulainen P, Saranpää P, Vapaavuori E (2003) Chemical factors affecting the brown-rot decay resistance of Scots pine heartwood. Trees 17:263–268

    CAS  Google Scholar 

  • Hyodo F, Azuma J-I, Abe T (1999) Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus Shiraki, on lignin by solid-state CP/MAS 13C NMR. Holzforschung 53:244–246

    Article  CAS  Google Scholar 

  • KCL (1982) Massan ja puun kokonaisligniinipitoisuus (Total lignin content of wood and pulp) (in Finnish). KCL, Espoo, Finland 115b, p 3

  • McDougall GJ (1998) Purification of coniferyl alcohol oxidase from lignifying xylem of sitka spruce using immobilized metal affinity chromatography. J Plant Phys 153:539–544

    CAS  Google Scholar 

  • Marjamaa K, Kukkola E, Lundell T, Karhunen P, Saranpää P, Fagerstedt KV (2006) Monolignol oxidation by xylem peroxidase isoforms of Norway spruce (Picea abies) and silver birch (Betula pendula). Tree Physiol 26:605–611

    PubMed  CAS  Google Scholar 

  • Marjamaa K, Lehtonen M, Lundell T, Toikka M, Saranpää P, Fagerstedt KV (2003) Developmental lignification and seasonal variation in β-glucosidase and peroxidase activities in xylem of Scots pine, Norway spruce and Silver birch. Tree Physiol 23:977–986

    PubMed  CAS  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    Article  CAS  Google Scholar 

  • Østergaard L, Teilum K, Mirza O, Mattsson O, Petersen M, Welinder KG, Mundy J, Gajhede M, Henriksen A (2000) Arabidopsis ATP A2 peroxidase Expression and high-resolution structure of a plant peroxidase with implications for lignification. Plant Mol Biol 44:231–243

    Article  PubMed  Google Scholar 

  • Ranocha P, McDougall G, Hawkins S, Sterjiades R, Borderies G, Stewart D, Cabanes-Macheteau M, Boudet A-M, Goffner D (1999) Biochemical characterization, molecular cloning and expression of laccases—a divergent gene family—in poplar. Eur J Biochem 259:485–495

    Article  PubMed  CAS  Google Scholar 

  • Rättö M, Ritschkoff A-C, Viikari L (2004) Enzymatically polymerized phenolic compounds as wood preservatives. Holzforschung 58:440–445

    Article  Google Scholar 

  • Ros-Barceló A, Pomar F, López-Serrano M, Martínez P, Pedreño MA (2002) Developmental regulation of the H2O2-producing system and of a basic peroxidase isoenzyme in the Zinnia elegans lignifying xylem. Plant Physiol Biochem 40:325–332

    Article  Google Scholar 

  • Savidge RA, Udagama-Randeniya PV, Xu Y, Leinhos V, Förster H (1996) Coniferyl alcohol oxidase: a new enzyme spatio temporally associated with lignifying tissues. In: Lewis NC, Sarkanen S (eds) Lignin and lignan biosynthesis. American Chemical Society, Washington, pp 109–130

    Google Scholar 

  • Singh AP, Nilsson T, Daniel GF, Donaldson LA (1994) Variable resistance of Pinus Sylvestris wood components to attack by wood degrading bacteria. Recent advance in wood anatomy. In: Proceedings of the third Pacific regional wood anatomy conference, Rotorua, 20–24 November, pp 408–416

  • Stich K, Ebermann R (1988) Localization of peroxidase isoenzymes in different parts of some trees. Phyton (Austria) 28:109–114

    CAS  Google Scholar 

  • Tarkka MT, Nyman TA, Kalkkinen N, Raudaskoski M (2001) Scots pine expresses short-root-specific peroxidases during development. Eur J Biochem 268:86–92

    Article  PubMed  CAS  Google Scholar 

  • Tiimonen H, Aronen T, Laakso T, Saranpää P, Chiang V, Ylioja T, Roininen H, Häggman H (2005) Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222:699–708

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T (2003) Analysis of native bonds between lignin and carbohydrate by specific chemical reactions. In: Timell TE (Ed) Association between lignin and carbohydrates in wood and other plant tissues. Springer, Berlin Heidelberg New York, pp 91–130

    Google Scholar 

Download references

Acknowledgment

The financial support of the Academy of Finland programme on Sustainable Use of Forest Resources, grant no. 176684, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt Fagerstedt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiskila, S., Fagerstedt, K., Laakso, T. et al. Polymerisation of added coniferyl alcohol by inherent xylem peroxidases and its effect on fungal decay resistance of Norway spruce. Wood Sci Technol 40, 697–707 (2006). https://doi.org/10.1007/s00226-006-0081-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-006-0081-x

Keywords

Navigation