Skip to main content
Log in

Maturity and growth rate effects on Scots pine basic density

  • Original
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Abstract

It is indisputable that cambium maturity contributes to the basic density of wood. It is shown that in the case of two independent Scots pine materials collected from Eastern Finland, the basic density depends solely on cambium age, while distance from the tree pith makes no contribution at all. It is also shown that the basic density is independent of growth rate, even if it is negatively correlated with annual ring width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Björklund L, Walfridsson E (1993) Tallvedens egenskaper i Sverige—Torr-rådensitet, kärnvedhalt, fuktighet och barkhalt. Properties of Scots pine wood in Sweden—basic density, heartwood, moisture and bark content. The Swedish University of Agricultural Sciences, Department of Forest Products, report 234, 75 p.

  • Dorn D (1968) Relationship of specific gravity and tracheid length to growth rate and provenance in Scotch pine. 16th northeastern forest tree improvement conference, Mcdonald College, Quebec, Canada, 8–10 August 1968, pp 1–6

  • Ericson B (1960) Studies of the genetical wood density variation in Scots Pine and Norway Spruce. Statens skogsforskningsinstitut, avdelningen för skogsproduktion, rapport 4. Forest Research Institute of Sweden, Department of Forest Yield Research, report 4, 52 p.

  • Hackett WP (1976) Control of phase change in woody plants. Acta Hort 56:143–154

    Google Scholar 

  • Hakkila P (1967) Vaihtelumalleja kuoren painosta ja painoprosentista. Variation patterns of bark weight and bark percentage by weight. Comm Inst For Fenn 62(5):37 p.

    Google Scholar 

  • Hartig R (1874) Das specifische Frisch- und Trockengewicht, der Wassergehalt und das Schwinden des Kiefernholzes. Z Forst Jagd 6:194–218

    Google Scholar 

  • Hartig R (1885) Das Holz der deutschen Nadelwaldbäume. Verlag von Julius Springer, Berlin, 147 p.

  • Hiley WE (1955) Quality in softwoods. Q J Forest 49:159–164

    Google Scholar 

  • Huikari O, Aitolahti M, Metsänheimo U, Veijalainen, P (1967) Puuston kasvumahdollisuuksista ojitetuilla soilla Pohjois-Suomessa. On the potential tree growth on drained peat lands in Northern Finland. Comm Inst For Fenn 64(5)

  • Longman KA, Wareing PF (1959) Early induction of flowering in birch seedlings. Nature 184(4704):2037–2038

    Google Scholar 

  • Lundh E (1925) Produktionsundersökningar å avdikade marker inom Bjurfors Kronopark. Sv Skogsv för Tidskr 23:195–248, 315–348

    Google Scholar 

  • Olesen PO (1978) On cyclophysis and topophysis. Silvae Genetica 27(5):173–178

    Google Scholar 

  • Omeis E (1895) Untersuchungen des Wachsthumsganges und der Holzbeschaffenheit eines 110jährigen Kiefernbestandes. Forst Naturwiss Z 4(4):137–170

    Google Scholar 

  • Rendle BJ, Phillips EWJ (1958) The effect of rate of growth (ring width) on the density of softwoods. Forestry 31(2):113–120

    Google Scholar 

  • Robinson LW, Wareing PF (1969) Experiments on the juvenile-adult phase change in some woody species. New Phytol 68:67–78

    Google Scholar 

  • Schwappach A (1892) Beiträge zur Kenntniss der Qualität des Kiefernholzes. Z Forst Jagd 14(1):75–88

    Google Scholar 

  • Schwappach A (1897) Raumgewicht und Druckfestigkeit des Holzes wichtiger Waldbäume. 1. Die Kiefer. Verlag von Julius Springer, Berlin, pp 1–133

  • Seppälä K (1969) Kuusen ja männyn kasvun kehitys ojitetuilla turvemailla. Acta For Fenn 93

  • Sirviö J, Kärenlampi P (2000) The effects of maturity and growth rate on the properties of spruce wood tracheids. Wood Sci Technol 35(6):541–554

    Google Scholar 

  • Uusvaara O (1974) Wood quality in plantation-grown Scots Pine. Comm Inst For Fenn 80(2):105 p.

    Google Scholar 

  • Wareing PF, Frydman WM (1976) General aspects of phase change, with special reference to Hedera helix L. Acta Hort 56:57–69

    Google Scholar 

  • Volkert E (1941) Untersuchungen über Grösse und Verteilung des Raumgewichts in Nadelholzstämmen. Schriftenreihe der Hermann-Göring-Akademie der Deutschen Forstwissenschaft 2:1–133

  • Yang KC, Hazenberg G (1994) Impact of spacing on tracheid length, relative density, and growth rate of juvenile wood and mature wood in Picea mariana. Can J Forest Res 24(5):996–1007

    Google Scholar 

Download references

Acknowledgement

The authors highly appreciate the technical and financial assistance of their industrial collaborators, as well as the experimental assistance of Petri Hallikainen and Mika Tahvanainen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petri P. Kärenlampi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

P. Kärenlampi, P., Riekkinen, M. Maturity and growth rate effects on Scots pine basic density. Wood Sci Technol 38, 465–473 (2004). https://doi.org/10.1007/s00226-004-0243-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00226-004-0243-7

Keywords

Navigation