Skip to main content
Log in

Beyond the Existential Theory of the Reals

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We show that completeness at higher levels of the theory of the reals is a robust notion (under changing the signature and bounding the domain of the quantifiers). This mends recognized gaps in the hierarchy, and leads to stronger completeness results for various computational problems. We exhibit several families of complete problems which can be used for future completeness results in the real hierarchy. As an application we sharpen some results by Bürgisser and Cucker on the complexity of properties of semialgebraic sets, including the Hausdorff distance problem also studied by Jungeblut, Kleist, and Miltzow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We do allow abbreviations, e.g. we write powers such as \(x^4\), but we understand that to be shorthand for \(x\cdot x \cdot x \cdot x\).

  2. We will keep using both symbols, since they can easily be expressed by exchanging lhs and rhs of the inequality and flipping the sign.

  3. This elimination result relies on the discrete setting.

  4. As the reviewer points out, Koiran’s result is even stronger, it applies in the BSS-model.

  5. At the second level we do not need Koiran’s method for quantifier elimination [37], we can argue directly: \(\forall ^*\) can be rewritten as \(\forall \exists \), and the additional existential quantifiers merged with the existing ones.

  6. We’d like to write \(\exists \mathbb {R}^{\textbf{coNP}^{\exists \mathbb {R}}}\) for this class, but this notation suggests an oracle model for \(\exists \mathbb {R}\), and the details of that would still need to be worked out.

References

  1. Jungeblut, P., Kleist, L., Miltzow, T.: The complexity of the Hausdorff distance. In: 38th International Symposium on Computational Geometry. LIPIcs. Leibniz Int. Proc. Inform., vol. 224, pp. 48–17. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2022). https://doi.org/10.4230/lipics.socg.2022.48

  2. D’Costa, J., Lefaucheux, E., Neumann, E., Ouaknine, J., Worrell, J.: On the complexity of the escape problem for linear dynamical systems over compact semialgebraic sets. In: Bonchi, F., Puglisi, S.J. (eds.) 46th International Symposium on Mathematical Foundations of Computer Science. LIPIcs. Leibniz Int. Proc. Inform., vol. 202, pp. 33–21. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2021). https://doi.org/10.4230/LIPIcs.MFCS.2021.33

  3. Dobbins, M.G., Kleist, L., Miltzow, T., Rzążewski, P.: \(\forall \exists \mathbb{R}\)-completeness and area-universality. In: Graph-theoretic Concepts in Computer Science. Lecture Notes in Comput. Sci., vol. 11159, pp. 164–175. Springer, ??? (2018). https://doi.org/10.1007/978-3-030-00256-5_14

  4. Dobbins, M.G., Kleist, L., Miltzow, T., Rzążewski, P.: Completeness for the complexity class \(\forall \exists \mathbb{R} \) and area-universality. Discrete Comput. Geom. (2022). https://doi.org/10.1007/s00454-022-00381-0

    Article  Google Scholar 

  5. Blanc, M., Hansen, K.A.: Computational complexity of multi-player evolutionarily stable strategies. ArXiv e-prints. (2022) https://doi.org/10.48550/ARXIV.2203.07407

  6. Schaefer, M., Štefankovič, D.: Fixed points, Nash equilibria, and the existential theory of the reals. Theory Comput. Syst. 60(2), 172–193 (2017). https://doi.org/10.1007/s00224-015-9662-0

    Article  MathSciNet  Google Scholar 

  7. Bürgisser, P., Cucker, F.: Exotic quantifiers, complexity classes, and complete problems. Found. Comput. Math. 9(2), 135–170 (2009). https://doi.org/10.1007/s10208-007-9006-9

    Article  MathSciNet  Google Scholar 

  8. Tarski, A.: A Decision Method for Elementary Algebra And Geometry, p. 60. The Rand Corporation, Santa Monica, Calif (1948)

    Google Scholar 

  9. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry, 2nd edn. Algorithms and Computation in Mathematics, vol. 10, p. 662. Springer, Berlin (2006). https://doi.org/10.1007/3-540-33099-2

  10. Abrahamsen, M., Adamaszek, A., Miltzow, T.: The art gallery problem is \(\exists \mathbb{R} \)-complete. J. ACM. 69(1), 4–70 (2022). https://doi.org/10.1145/3486220

    Article  MathSciNet  Google Scholar 

  11. Abrahamsen, M.: Covering polygons is even harder. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021, pp. 375–386. IEEE Computer Soc., Los Alamitos, CA (2022). https://doi.org/10.1109/FOCS52979.2021.00045

  12. Schaefer, M.: The complexity of angular resolution. J. Graph Algorithms Appl. 27(7), 565–580 (2023). https://doi.org/10.7155/jgaa.00634

    Article  MathSciNet  Google Scholar 

  13. Miltzow, T., Schmiermann, R.F.: On classifying continuous constraint satisfaction problems. In: 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science—FOCS 2021, pp. 781–791. IEEE Computer Soc., Los Alamitos, CA (2022). https://doi.org/10.1109/FOCS52979.2021.00081

  14. Berthelsen, M.L.T., Hansen, K.A.: On the computational complexity of decision problems about multi-player Nash equilibria. Theory Comput. Syst. 66(3), 519–545 (2022). https://doi.org/10.1007/s00224-022-10080-1

    Article  MathSciNet  Google Scholar 

  15. Bertschinger, D., Hertrich, C., Jungeblut, P., Miltzow, T., Weber, S.: Training fully connected neural networks is \(\exists \mathbb{R}\)-complete. ArXiv e-prints. (2022) https://doi.org/10.48550/arXiv.2204.01368

  16. Matoušek, J.: Intersection graphs of segments and \(\exists \mathbb{R}\). ArXiv e-prints. (2014). arXiv:1406.2636

  17. Wikipedia: Existential theory of the reals. (Online; accessed 6-June-2022) (2012). http://en.wikipedia.org/wiki/Existential_theory_of_the_reals

  18. Bienstock, D.: Some provably hard crossing number problems. Discrete Comput. Geom. 6(5), 443–459 (1991). https://doi.org/10.1007/BF02574701

    Article  MathSciNet  Google Scholar 

  19. Kratochvíl, J., Matoušek, J.: Intersection graphs of segments. J. Combin. Theory Ser. B. 62(2), 289–315 (1994). https://doi.org/10.1006/jctb.1994.1071

    Article  MathSciNet  Google Scholar 

  20. Mnëv, N.E.: The universality theorems on the classification problem of configuration varieties and convex polytopes varieties. In: Topology and Geometry—Rohlin Seminar. Lecture Notes in Math., vol. 1346, pp. 527–543. Springer, Berlin (1988)

  21. Shor, P.W.: Stretchability of pseudolines is NP-hard. In: Applied Geometry and Discrete Mathematics. DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 4, pp. 531–554. Amer. Math. Soc., Providence, RI (1991). https://doi.org/10.1090/dimacs/004/41

  22. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. Comput. Complexity. 24(3), 477–532 (2015). https://doi.org/10.1007/s00037-015-0105-8

    Article  MathSciNet  Google Scholar 

  23. Sontag, E.D.: Real addition and the polynomial hierarchy. Inform. Process. Lett. 20(3), 115–120 (1985). https://doi.org/10.1016/0020-0190(85)90076-6

    Article  MathSciNet  Google Scholar 

  24. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation, p. 453. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0701-6

  25. Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.). 21(1), 1–46 (1989) https://doi.org/10.1090/S0273-0979-1989-15750-9

  26. Bürgisser, P., Cucker, F.: Counting complexity classes for numeric computations. II. Algebraic and semialgebraic sets. J. Complexity. 22(2), 147–191 (2006) https://doi.org/10.1145/1007352.1007425

  27. Basu, S., Zell, T.: Polynomial hierarchy, Betti numbers, and a real analogue of Toda’s theorem. Found. Comput. Math. 10(4), 429–454 (2010). https://doi.org/10.1007/s10208-010-9062-4

    Article  MathSciNet  Google Scholar 

  28. Solernó, P.: Effective Łojasiewicz inequalities in semialgebraic geometry. Appl. Algebra Engrg. Comm. Comput. 2(1), 2–14 (1991). https://doi.org/10.1007/BF01810850

    Article  MathSciNet  Google Scholar 

  29. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. I. Introduction. Preliminaries. The geometry of semi-algebraic sets. The decision problem for the existential theory of the reals. J. Symbolic Comput. 13(3), 255–299 (1992) https://doi.org/10.1016/S0747-7171(10)80003-3

  30. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. II. The general decision problem. Preliminaries for quantifier elimination. J. Symbolic Comput. 13(3), 301–327 (1992) https://doi.org/10.1016/S0747-7171(10)80004-5

  31. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. III. Quantifier elimination. J. Symbolic Comput. 13(3), 329–352 (1992). https://doi.org/10.1016/S0747-7171(10)80005-7

    Article  MathSciNet  Google Scholar 

  32. Jeronimo, G., Perrucci, D.: On the minimum of a positive polynomial over the standard simplex. J. Symbolic Comput. 45(4), 434–442 (2010). https://doi.org/10.1016/j.jsc.2010.01.001

    Article  MathSciNet  Google Scholar 

  33. Ouaknine, J., Worrell, J.: Ultimate positivity is decidable for simple linear recurrence sequences. ArXiv e-prints. (2017) https://doi.org/10.48550/arXiv.1309.1914, arXiv:1309.1914

  34. Schaefer, M.: Realizability of graphs and linkages. In: Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_24

  35. Cucker, F., Rosselló, F.: On the complexity of some problems for the Blum, Shub & Smale model. In: LATIN ’92 (São Paulo, 1992). Lecture Notes in Comput. Sci., vol. 583, pp. 117–129. Springer, ??? (1992). https://doi.org/10.1007/BFb0023823

  36. Boyd, S., Vandenberghe, L.: Convex Optimization, p. 716. Cambridge University Press, Cambridge (2004). https://doi.org/10.1017/CBO9780511804441

  37. Koiran, P.: The real dimension problem is \({\rm NP}_{\mathbb{R} }\)-complete. J. Complexity. 15(2), 227–238 (1999). https://doi.org/10.1006/jcom.1999.0502

    Article  MathSciNet  Google Scholar 

  38. Szeider, S.: Generalizations of matched CNF formulas. Ann. Math. Artif. Intell. 43(1–4), 223–238 (2005). https://doi.org/10.1007/s10472-005-0432-6

    Article  MathSciNet  Google Scholar 

  39. Le, H.P., Safey El Din, M., Wolff, T.: Computing the real isolated points of an algebraic hypersurface. In: ISSAC’20—Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation, pp. 297–304. ACM, New York (2020). https://doi.org/10.1145/3373207.3404049

  40. Lovász, L.: Semidefinite programs and combinatorial optimization. In: Recent Advances in Algorithms and Combinatorics. CMS Books Math./Ouvrages Math. SMC, vol. 11, pp. 137–194. Springer,??? (2003). https://doi.org/10.1007/0-387-22444-0_6

  41. Ramana, M.V.: An exact duality theory for semidefinite programming and its complexity implications. Math. Programming. 77(2, Ser. B), 129–162 (1997) https://doi.org/10.1016/S0025-5610(96)00082-2

  42. Goemans, M.X.: Semidefinite programming and combinatorial optimization. In: Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), vol. Extra Vol. III, pp. 657–666 (1998). https://doi.org/10.4171/DMS/1-3/63

  43. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009). https://doi.org/10.1137/070697926

    Article  MathSciNet  Google Scholar 

  44. Erickson, J., Hoog, I., Miltzow, T.: Smoothing the gap between NP and ER. In: 2020 IEEE 61st Annual Symposium on Foundations of Computer Science, pp. 1022–1033. IEEE Computer Soc., Los Alamitos, CA (2020). https://doi.org/10.1109/FOCS46700.2020.00099

Download references

Acknowledgements

We would like to thank an anonymous reader who suggested the paper by Bürgisser and Cucker [7], which led to the addition of the results in Section 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Schaefer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer, M., Štefankovič, D. Beyond the Existential Theory of the Reals. Theory Comput Syst 68, 195–226 (2024). https://doi.org/10.1007/s00224-023-10151-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-023-10151-x

Keywords

Mathematics Subject Classification (2010)

Navigation