Skip to main content
Log in

Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Let \({\mathbb {F}}[X]\) be the polynomial ring in the variables X = {x1,x2,…,xn} over a field \({\mathbb {F}}\). An ideal I = 〈p1(x1),…,pn(xn)〉 generated by univariate polynomials \(\{p_{i}(x_{i})\}_{i=1}^{n}\) is a univariate ideal. Motivated by Alon’s Combinatorial Nullstellensatz we study the complexity of univariate ideal membership: Given \(f\in {\mathbb {F}}[X]\) by a circuit and polynomials pi the problem is test if fI. We obtain the following results.

  • Suppose f is a degree-d, rank-r polynomial given by an arithmetic circuit where i : 1 ≤ ir are linear forms in X. We give a deterministic time dO(r) ⋅poly(n) division algorithm for evaluating the (unique) remainder polynomial f(X)modI at any point \(\vec {a}\in {\mathbb {F}}^{n}\). This yields a randomized nO(r) algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields a new nO(r) algorithm for evaluating the permanent of a n × n matrix of rank r, over any field \(\mathbb {F}\).

  • Let f be over rationals with \(\deg (f)=k\) treated as fixed parameter. When the ideal \(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{n}^{e_{n}}}\right \rangle \), we can test ideal membership in randomized O((2e)k). On the other hand, if each pi has all distinct rational roots we can check if fI in randomized O(nk/2) time, improving on the brute-force \(\left (\begin {array}{cc}{n+k}\\ k \end {array}\right )\)-time search.

  • If \(I=\left \langle {p_{1}(x_{1}), \ldots , p_{k}(x_{k})}\right \rangle \), with k as fixed parameter, then ideal membership testing is W[2]-hard. The problem is MINI[1]-hard in the special case when \(I=\left \langle {x_{1}^{e_{1}}, \ldots , x_{k}^{e_{k}}}\right \rangle \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We use f to denote f(1,…,r).

  2. Shown [28] using the identity \(e^{{\sum }_{i} y_{i}}={\prod }_{i} e^{y_{i}}\), and taylor series expansion for \(e^{y_{i}}\).

  3. Polynomials \(f,g\in \mathbb {F}[X]\) are weakly equivalent if for each monomial m, [m]f = 0 if and only if [m]g = 0.

References

  1. Alon, N.: Combinatorial nullstellensatz. Comb. Probab. Comput. 8(1–2), 7–29 (1999). http://dl.acm.org/citation.cfm?id=971651.971653

    Article  MathSciNet  Google Scholar 

  2. Alon, N., Tarsi, M.: A note on graph colorings and graph polynomials. J. Comb. Theory Ser. B. 70(1), 197–201 (1997). https://doi.org/10.1006/jctb.1997.1753

    Article  MathSciNet  Google Scholar 

  3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42 (4), 844–856 (1995). https://doi.org/10.1145/210332.210337

    Article  MathSciNet  Google Scholar 

  4. Kotlov, A., Lovász, L: The rank and size of graphs. J. Graph Theory 23(2), 185–189 (1996)

    Article  MathSciNet  Google Scholar 

  5. Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Fast exact algorithms using Hadamard product of polynomials. arXiv:1807.04496 (2018)

  6. Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Univariate ideal membership parameterized by rank degree, and number of generators. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December 11-13, 2018, Ahmedabad, India, pp 7:1–7:18 (2018). https://doi.org/10.4230/LIPIcs.FSTTCS.2018.7

  7. Arvind, V., Chatterjee, A., Datta, R., Mukhopadhyay, P.: Efficient black-box identity testing over free group algebra (accepted in RANDOM 2019). arXiv:1904.12337 (2019)

  8. Arvind, V., Mukhopadhyay, P.: The ideal membership problem and polynomial identity testing. Inf. Comput. 208(4), 351–363 (2010). https://doi.org/10.1016/j.ic.2009.06.003

    Article  MathSciNet  Google Scholar 

  9. Barvinok, A.I.: Two algorithmic results for the traveling salesman problem. Math. Oper. Res. 21(1), 65–84 (1996). https://doi.org/10.1287/moor.21.1.65

    Article  MathSciNet  Google Scholar 

  10. Björklund, A., Kaski, P., Kowalik, L.: Constrained multilinear detection and generalized graph motifs. Algorithmica 74(2), 947–967 (2016). https://doi.org/10.1007/s00453-015-9981-1

    Article  MathSciNet  Google Scholar 

  11. Brand, C., Dell, H., Husfeldt, T.: Extensor-coding. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA June 25-29, 2018. https://doi.org/10.1145/3188745.3188902, pp 151–164 (2018)

  12. Cox, D.A., Little, J., O’Shea, D.: Ideals Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, New York, Inc., Secaucus, NJ USA (2007)

    Book  Google Scholar 

  13. Cygan, M., Fomin, FV., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, New York (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  14. Demillo, RA., Lipton, RJ.: A probabilistic remark on algebraic program testing. Inf. Process. Lett. 7(4), 193–195 (1978). http://www.sciencedirect.com/science/article/pii/0020019078900674, https://doi.org/10.1016/0020-0190(78)90067-4

    Article  Google Scholar 

  15. Downey, RG., Estivill-Castro, V., Fellows, M.R., Prieto-Rodriguez, E., Rosamond, FA.: Cutting up is hard to do: the parameterized complexity of k-cut and related problems. Electr. Notes Theor. Comput. Sci. 78, 209–222 (2003). https://doi.org/10.1016/S1571-0661(04)81014-4

    Article  Google Scholar 

  16. Forbes, M., Shpilka, A.: Quasipolynomial-time identity testing of non-commutative and read-once oblivious algebraic branching programs. In: 16th Annual Symposium on Foundations of Computer Science, 09 2012. https://doi.org/10.1109/FOCS.2013.34 (1975)

  17. Kayal, N.: Algorithms for arithmetic circuits. Electron. Colloq. Comput. Complex. (ECCC) 17, 73 (2010)

    Google Scholar 

  18. Kayal, N., Saxena, N.: Polynomial identity testing for depth 3 circuits. Comput. Complex. 16(2), 115–138 (2007). https://doi.org/10.1007/s00037-007-0226-9

    Article  MathSciNet  Google Scholar 

  19. Koiran, P.: Hilbert’s nullstellensatz is in the polynomial hierarchy. J. Complex. 12(4), 273–286 (1996). https://doi.org/10.1006/jcom.1996.0019

    Article  MathSciNet  Google Scholar 

  20. Kotlov, A.: Rank and chromatic number of a graph. J. Graph Theory 26(1), 1–8 (1997)

    Article  MathSciNet  Google Scholar 

  21. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp 575–586 (2008). https://doi.org/10.1007/978-3-540-70575-8_47

  22. Koutis, I.: Constrained multilinear detection for faster functional motif discovery. Inf. Process. Lett. 112(22), 889–892 (2012). https://doi.org/10.1016/j.ipl.2012.08.008

    Article  MathSciNet  Google Scholar 

  23. Koutis, I., Williams, R.: LIMITS and applications of group algebras for parameterized problems. ACM Trans. Algorithm. 12(3), 31:1–31:18 (2016). https://doi.org/10.1145/2885499

    Article  MathSciNet  Google Scholar 

  24. Lee, H.: Power sum decompositions of elementary symmetric polynomials. Linear Algebra Appl. 492(08) (2015)

  25. Mahler, K.: An inequality for the discriminant of a polynomial. Mich. Math. J. 09(3), 257–262 (1964). https://doi.org/10.1307/mmj/1028999140

    MathSciNet  MATH  Google Scholar 

  26. Mayr, E., Meyer, A.: The complexity of word problem for commutative semigroups and polynomial ideals. Adv. Math 46, 305–329 (1982)

    Article  MathSciNet  Google Scholar 

  27. Pratt, K.: Faster algorithms via waring decompositions. arXiv:1807.06194 (2018)

  28. Saxena, N.: Diagonal circuit identity testing and lower bounds. In: Automata, Languages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games, pp 60–71 (2008). https://doi.org/10.1007/978-3-540-70575-8_6

  29. Saxena, N., Seshadhri, C.: From sylvester-gallai configurations to rank bounds: Improved blackbox identity test for depth-3 circuits. J. ACM 60(5), 33:1–33:33 (2013). https://doi.org/10.1145/2528403

    Article  MathSciNet  Google Scholar 

  30. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pp 216–226. ACM, New York, NY USA (1978)

  31. Schwartz, J.T.: Fast probabilistic algorithm for verification of polynomial identities. J. ACM. 27(4), 701–717 (1980)

    Article  MathSciNet  Google Scholar 

  32. Sudan, M.: Lectures on algebra and computation. Lecture notes 6,12,13,14 (1998)

  33. Williams, R.: Finding paths of length k in O(2k) time. Inf. Process. Lett. 109(6), 315–318 (2009). https://doi.org/10.1016/j.ipl.2008.11.004

    Article  Google Scholar 

  34. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Proc. of the Int. Sym. on Symbolic and Algebraic Computation, pp 216–226 (1979)

Download references

Acknowledgements

We thank the anonymous reviewers for their useful comments. The third author acknowledges partial support from Infosys Foundation. The fourth author acknowledges partial support from Infosys Foundation and Tata Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arvind.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier version of this paper was presented at the FSTTCS conference [6].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arvind, V., Chatterjee, A., Datta, R. et al. Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators. Theory Comput Syst 66, 56–88 (2022). https://doi.org/10.1007/s00224-021-10053-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-021-10053-w

Keywords

Navigation