Skip to main content
Log in

The Descriptive Complexity of Subgraph Isomorphism Without Numerics

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Let F be a connected graph with vertices. The existence of a subgraph isomorphic to F can be defined in first-order logic with quantifier depth no better than , simply because no first-order formula of smaller quantifier depth can distinguish between the complete graphs K and K− 1. We show that, for some F, the existence of an F subgraph in sufficiently large connected graphs is definable with quantifier depth − 3. On the other hand, this is never possible with quantifier depth better than /2. If we, however, consider definitions over connected graphs with sufficiently large treewidth, the quantifier depth can for some F be arbitrarily small comparing to but never smaller than the treewidth of F. Moreover, the definitions over highly connected graphs require quantifier depth strictly more than the density of F. Finally, we determine the exact values of these descriptive complexity parameters for all connected pattern graphs F on 4 vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In his presentation [29], Benjamin Rossman states upper bounds WFO(F) ≤tw(F) + 1 and DFO(F) ≤ td(F) for the colorful version of Subgraph Isomorphism studied in [21]. It is not hard to observe that the auxiliary color predicates can be defined in FO[Arb] at the cost of two extra quantified variables by the color-coding method developed in [2]; see also [3, Thm. 4.2].

  2. Note that our language does not contain the truth constants ⊤ and ⊥; otherwise we would have Dv(P3) = 0.

  3. Very recently [34], we were able to settle this problem by showing that \(D_{v}(F)\le \frac 23\,v(F)+ 1\) for infinitely many pattern graphs F and \(W_{v}(F)>\frac 23\,v(F)-2\) for all F.

References

  1. Alon, N., Spencer, J.H.: The probabilistic method. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995). https://doi.org/10.1145/210332.210337

    Article  MathSciNet  MATH  Google Scholar 

  3. Amano, K.: k-Subgraph isomorphism on AC 0 circuits. Comput. Complex. 19(2), 183–210 (2010). https://doi.org/10.1007/s00037-010-0288-y

    Article  MATH  Google Scholar 

  4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996). https://doi.org/10.1137/S0097539793251219

    Article  MathSciNet  MATH  Google Scholar 

  5. Bollobás, B.: : Random graphs Cambridge Studies in Advanced Mathematics, 2nd edn., vol. 73. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511814068

  6. Chandran, L.S., Subramanian, C.R.: Girth and treewidth. J. Comb. Theory, Ser. B 93(1), 23–32 (2005). https://doi.org/10.1016/j.jctb.2004.05.004

    Article  MathSciNet  MATH  Google Scholar 

  7. Chekuri, C., Chuzhoy, J.: Polynomial Bounds for the Grid-Minor Theorem. In: Proceedings of the 46Th ACM Symposium on Theory of Computing (STOC’14), pp. 60–69 (2014). https://doi.org/10.1145/2591796.2591813

  8. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72(8), 1346–1367 (2006). https://doi.org/10.1016/j.jcss.2006.04.007

    Article  MathSciNet  MATH  Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  MATH  Google Scholar 

  10. Dawar, A.: A restricted second order logic for finite structures. Inf. Comput. 143(2), 154–174 (1998). https://doi.org/10.1006/inco.1998.2703

    Article  MathSciNet  MATH  Google Scholar 

  11. Diestel, R.: Graph theory. Springer, New York (2000)

    MATH  Google Scholar 

  12. Ebbinghaus, H.D., Flum, J.: Finite Model Theory, Enlarged Edn. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2006)

    Google Scholar 

  13. Floderus, P., Kowaluk, M., Lingas, A., Lundell, E.: Induced Subgraph Isomorphism: Are some patterns substantially easier than others? Theor. Comput. Sci. 605, 119–128 (2015). https://doi.org/10.1016/j.tcs.2015.09.001

    Article  MathSciNet  MATH  Google Scholar 

  14. Gall, F.L.: Powers of tensors and fast matrix multiplication. In: Proc. of the Int. Symposium on Symbolic and Algebraic Computation (ISSAC’14), pp 296–303. ACM (2014). https://doi.org/10.1145/2608628.2608664

  15. Grädel, E., Grohe, M.: Is polynomial time choiceless?. In: Fields of Logic and Computation II, Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday, Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-23534-9_11, vol. 9300, pp 193–209. Springer (2015)

  16. Immerman, N.: Descriptive complexity. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

    Book  MATH  Google Scholar 

  17. Janson, S., Łuczak, T., Ruciński, A.: Random Graphs. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  18. Kawarabayashi, K., Mohar, B.: Some recent progress and applications in graph minor theory. Graphs Comb. 23(1), 1–46 (2007). https://doi.org/10.1007/s00373-006-0684-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Kawarabayashi, K., Rossman, B.: An excluded-minor approximation of tree-depth. Manuscript (2016)

  20. Koucký, M., Lautemann, C., Poloczek, S., Thėrien, D.: Circuit Lower Bounds via Ehrenfeucht-Fraïssé Games. In: Proceedings of the 21St Ann. IEEE Conference on Computational Complexity (CCC’06), pp. 190–201 (2006). https://doi.org/10.1109/CCC.2006.12

  21. Li, Y., Razborov, A.A., Rossman, B.: On the AC0 complexity of Subgraph Isomorphism. SIAM J. Comput. 46 (3), 936–971 (2017). https://doi.org/10.1137/14099721X

    Article  MathSciNet  MATH  Google Scholar 

  22. Libkin, L.: Elements of finite model theory. Texts in theoretical computer science. An EATCS series. Springer, Berlin (2004). https://doi.org/10.1007/978-3-662-07003-1

    Book  Google Scholar 

  23. Nešetřil, J., Poljak, S.: On the complexity of the subgraph problem. Commentat. Math. Univ. Carol. 26, 415–419 (1985)

    MathSciNet  MATH  Google Scholar 

  24. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28, 53–54 (1988). https://doi.org/10.1016/0020-0190(88)90143-3

    Article  MathSciNet  MATH  Google Scholar 

  25. Pikhurko, O., Verbitsky, O.: Logical Complexity of Graphs: a Survey. In: Grohe, M., Makowsky, J. (eds.) Model Theoretic Methods in Finite Combinatorics, Contemporary Mathematics, vol. 558, pp 129–179. American Mathematical Society (AMS), Providence (2011)

  26. Pinsker, M.S.: On the complexity of a concentrator. In: Annual 7th International Teletraffic Conference, pp. 318/1–318/4 (1973)

  27. Rossman, B.: On the Constant-Depth Complexity of K-Clique. In: Proceedings of the 40th Ann. ACM Symposium on Theory of Computing (STOC’08), pp. 721–730. ACM (2008). https://doi.org/10.1145/1374376.1374480 https://doi.org/10.1145/1374376.1374480

  28. Rossman, B.: An improved homomorphism preservation theorem from lower bounds in circuit complexity. SIGLOG News 3(4), 33–46 (2016). http://dl.acm.org/citation.cfm?id=3026746

    Google Scholar 

  29. Rossman, B.: Lower bounds for Subgraph Isomorphism and consequences in first-order logic. Talk in the Workshop on Symmetry, Logic. Computation at the Simons Institute, Berkeley (2016). https://simons.berkeley.edu/talks/benjamin-rossman-11-08-2016

    Google Scholar 

  30. Schweikardt, N.: A short tutorial on order-invariant first-order logic. In: Proceedings of the 8th Int. Computer Science Symposium in Russia (CSR’13), Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-642-38536-0_10, vol. 7913, pp 112–126. Springer (2013)

  31. Turȧn, G.: On the definability of properties of finite graphs. Discret. Math. 49(3), 291–302 (1984). 10.1016/0012-365X(84)90166-3

    Article  MathSciNet  Google Scholar 

  32. Verbitsky, O., Zhukovskii, M.: The descriptive complexity of Subgraph Isomorphism without numerics. In: Weil, P. (ed.) Proceedings of the 12th Int. Computer Science Symposium in Russia (CSR’17), Lecture Notes in Computer Science. https://doi.org/10.1007/978-3-319-58747-9_27, vol. 10304, pp 308–322. Springer (2017)

  33. Verbitsky, O., Zhukovskii, M.: On the first-order complexity of Induced Subgraph Isomorphism. In: Proceedings of the 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), LIPIcs—Leibniz International Proceedings in Informatics, vol. 82, pp. 40:1–40:16 (2017)

  34. Verbitsky, O., Zhukovskii, M.: Tight bounds on the asymptotic descriptive complexity of Subgraph Isomorphism. E-print: arXiv:https://arxiv.org/abs/1802.02143(2018)

  35. Wormald, N.: Models of Random Regular Graphs. In: Surveys in Combinatorics, pp. 239–298. Cambridge University Press (1999)

  36. Zhukovskii, M.: Zero-one k-law. Discret. Math. 312, 1670–1688 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Tobias Müller for his kind hospitality during the Workshop on Logic and Random Graphs in the Lorentz Center (August 31 – September 4, 2015), where this work was originated. We are also thankful to the anonymous referees for a number of useful suggestions, in particular, for a simplification in the proof of Lemma 6.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Verbitsky.

Additional information

This article is part of the Topical Collection on Computer Science Symposium in Russia

O. Verbitsky is supported by DFG grants VE 652/1–2 and KO 1053/8–1. M. Zhukovskii is supported by grants No. 15-01-03530 and 16-31-60052 of Russian Foundation for Basic Research.

Oleg Verbitsky is on leave from the IAPMM, Lviv, Ukraine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verbitsky, O., Zhukovskii, M. The Descriptive Complexity of Subgraph Isomorphism Without Numerics. Theory Comput Syst 63, 902–921 (2019). https://doi.org/10.1007/s00224-018-9864-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-018-9864-3

Keywords

Navigation