Theory of Computing Systems

, Volume 62, Issue 3, pp 739–770 | Cite as

Parameterizing Edge Modification Problems Above Lower Bounds

  • René van Bevern
  • Vincent Froese
  • Christian Komusiewicz


We study the parameterized complexity of a variant of the F-free Editing problem: Given a graph G and a natural number k, is it possible to modify at most k edges in G so that the resulting graph contains no induced subgraph isomorphic to F? In our variant, the input additionally contains a vertex-disjoint packing \(\mathcal {H}\) of induced subgraphs of G, which provides a lower bound \(h(\mathcal {H})\) on the number of edge modifications required to transform G into an F-free graph. While earlier works used the number k as parameter or structural parameters of the input graph G, we consider instead the parameter \(\ell :=k-h(\mathcal {H})\), that is, the number of edge modifications above the lower bound \(h(\mathcal {H})\). We develop a framework of generic data reduction rules to show fixed-parameter tractability with respect to for K 3-Free Editing, Feedback Arc Set in Tournaments, and Cluster Editing when the packing \(\mathcal {H}\) contains subgraphs with bounded solution size. For K 3-Free Editing, we also prove NP-hardness in case of edge-disjoint packings of K 3s and = 0, while for K q -Free Editing and q ≥ 6, NP-hardness for = 0 even holds for vertex-disjoint packings of K q s. In addition, we provide NP-hardness results for F-free Vertex Deletion, were the aim is to delete a minimum number of vertices to make the input graph F-free.


NP-hard problem Fixed-parameter algorithm Subgraph packing Kernelization Graph-based Clustering Feedback arc set Cluster editing 


  1. 1.
    Alon, N.: Ranking tournaments. SIAM J. Discret. Math. 20(1), 137–142 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST Proceedings of the 36th International Colloquium on Automata, Languages, and Programming (ICALP ’09), Springer, Lecture Notes in Computer Science, vol. 5555, pp 49–58 (2009)Google Scholar
  3. 3.
    Aravind, N.R., Sandeep, R.B., Sivadasan, N.: Parameterized Lower Bounds and Dichotomy Results for the NP-Completeness of H-Free Edge Modification Problems Proceedings of the 12th Latin American Symposium on Theoretical Informatics, (LATIN ’16), vol. 9644, pp 82–95 (2016)Google Scholar
  4. 4.
    Bessy, S., Fomin, F.V., Gaspers, S., Paul, C., Perez, A., Saurabh, S., Thomassé, S: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci. 77(6), 1071–1078 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    van Bevern, R.: Towards optimal and expressive kernelization for d-Hitting Set. Algorithmica 70(1), 129–147 (2014)Google Scholar
  6. 6.
    van Bevern, R., Froese, V., Komusiewicz, C.: Parameterizing Edge Modification Problems above Lower Bounds Proceedings of the 11th International Computer Science Symposium in Russia (CSR’16), Springer, Lecture Notes in Computer Science, vol. 9691, pp 57–72 (2016)Google Scholar
  7. 7.
    Böcker, S: A golden ratio parameterized algorithm for cluster editing. J. Discrete Algoritms 16, 79–89 (2012)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Böcker, S, Briesemeister, S., Bui, Q.B.A., Truss, A.: Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brügmann, D., Komusiewicz, C., Moser, H.: On Generating Triangle-Free Graphs. In: Proceedings of the DIMAP Workshop on Algorithmic Graph Theory (AGT ’09), pp 51–58. Elsevier, ENDM (2009)Google Scholar
  10. 10.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58(4), 171–176 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cai, L., Cai, Y.: Incompressibility of H-free edge modification problems. Algorithmica 71(3), 731–757 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci. 78(1), 211–220 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: On multiway cut parameterized above lower bounds. ACM Trans. Comput. Theory 5(1), 3 (2013)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Dom, M., Guo, J., Hüffner, F., Niedermeier, R., Truss, A.: Fixed-parameter Tractability Results for Feedback Set Problems in Tournaments. In: Proceedings of the 6th International Conference on Algorithms and Complexity (CIAC ’06), Springer, Lecture Notes in Computer Science, vol. 3998, pp 320–331 (2006)Google Scholar
  15. 15.
    Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring the subexponential complexity of completion problems. ACM Trans. Comput. Theory 7 (4), 14 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Feige, U.: Faster FAST (feedback arc set in tournaments). CoRR abs/0911.5094. arXiv:0911.5094 (2009)
  17. 17.
    Fellows, M.R.: Blow-Ups, Win/Win’s, and Crown Rules: Some New Directions in FPT. In: Proceedings of the 29th International Workshop on Graph-Theoretic Concepts in Computer Science (WG ’03), Lecture Notes in Computer Science, vol. 2880, pp 1–12 (2003)Google Scholar
  18. 18.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discret. Optim. 8(1), 2–17 (2011)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms Texts in Theoretical Computer Science. An EATCS Series, Springer (2010)Google Scholar
  20. 20.
    Fomin, F.V., Pilipczuk, M.: Subexponential Parameterized Algorithm for Computing the Cutwidth of a Semi-Complete Digraph. In: Proceedings of the 21St Annual European Symposium (ESA ’13), Springer, Lecture Notes in Computer Science, vol. 8125, pp 505–516 (2013)Google Scholar
  21. 21.
    Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Subexponential fixed-parameter tractability of cluster editing. CoRR abs/1112.4419, arXiv:1112.4419 (2011)
  22. 22.
    Garg, S., Philip, G.: Raising the bar for vertex cover: Fixed-parameter tractability above a higher guarantee. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’16), SIAM, pp 1152–1166 (2016)Google Scholar
  23. 23.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39(4), 321–347 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial kernels for P -free edge modification problems. Algorithmica 65(4), 900–926 (2013)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Hartung, S., Hoos, H.H.: Programming by Optimisation Meets Parameterised Algorithmics: a Case Study for Cluster Editing. In: Proceedings of the 9th International Conference on Learning and Intelligent Optimization (LION ’15), Springer, Lecture Notes in Computer Science, vol. 8994, pp 43–58 (2015)Google Scholar
  27. 27.
    Karpinski, M., Schudy, W.: Faster Algorithms for Feedback Arc Set Tournament, Kemeny Rank Aggregation and Betweenness Tournament. In: Proceedings of the 21St International Symposium on Algorithms and Computation (ISAAC ’10), Springer, Lecture Notes in Computer Science, vol. 6506, pp 3–14 (2010)Google Scholar
  28. 28.
    Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discret. Appl. Math. 160(15), 2259–2270 (2012)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Komusiewicz, C., Hüffner, F, Moser, H., Niedermeier, R.: Isolation concepts for efficiently enumerating dense subgraphs. Theor. Comput. Sci. 410(38-40), 3640–3654 (2009)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kratsch, S.: Polynomial kernelizations for MIN F +π1 and MAX NP. Algorithmica 63(1-2), 532–550 (2012)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Kratsch, S.: Recent developments in kernelization: A survey. Bulletin of the EATCS, 113 (2014)Google Scholar
  32. 32.
    Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial kernels. Discret. Optim. 10(3), 193–199 (2013)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Informatica 23(3), 311–323 (1986)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Liu, Y., Wang, J., Guo, J., Chen, J.: Complexity and parameterized algorithms for Cograph Editing. Theor. Comput. Sci. 461, 45–54 (2012)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and MaxCut. Journal of Algorithms 31(2), 335–354 (1999)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Moser, H., Niedermeier, R., Sorge, M.: Exact combinatorial algorithms and experiments for finding maximum k-plexes. J. Comb. Optim. 24(3), 347–373 (2012)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press (2006)Google Scholar
  40. 40.
    Paul, C., Perez, A., Thomassé, S: Linear kernel for rooted triplet inconsistency and other problems based on conflict packing technique. J. Comput. Syst. Sci. 82(2), 366–379 (2016)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory of Computing Systems 44(1), 91–104 (2009)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Raman, V., Saurabh, S.: Parameterized algorithms for feedback set problems and their duals in tournaments. Theor. Comput. Sci. 351(3), 446–458 (2006)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. J. Comput. Syst. Sci. 75(8), 435–450 (2009)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Sandeep, R.B., Sivadasan, N.: Parameterized Lower Bound and Improved Kernel for Diamond-Free Edge Deletion. In: Proceedings of the 10th International Symposium on Parameterized and Exact Computation (IPEC ’15), Schloss Dagstuhl — Leibniz-Zentrum fuer Informatik, LIPIcs, vol. 43, pp 365–376 (2015)Google Scholar
  45. 45.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discret. Appl. Math. 144(1-2), 173–182 (2004)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wahlström, M.: Algorithms Measures and Upper Bounds for Satisfiability and Related Problems. PhD thesis, Linköpings Universitet (2007)Google Scholar
  47. 47.
    Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussian Federation
  2. 2.Sobolev Institute of Mathematics of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  3. 3.Technische Universität BerlinBerlinGermany
  4. 4.Friedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations