Skip to main content
Log in

A Process Calculus with Finitary Comprehended Terms

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We introduce the notion of an ACP process algebra and the notion of a meadow enriched ACP process algebra. The former notion originates from the models of the axiom system ACP. The latter notion is a simple generalization of the former notion to processes in which data are involved, the mathematical structure of data being a meadow. Moreover, for all associative operators from the signature of meadow enriched ACP process algebras that are not of an auxiliary nature, we introduce variable-binding operators as generalizations. These variable-binding operators, which give rise to comprehended terms, have the property that they can always be eliminated. Thus, we obtain a process calculus whose terms can be interpreted in all meadow enriched ACP process algebras. Use of the variable-binding operators can have a major impact on the size of terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We write \(\mathbb{N}^{+}\) for the set \(\mathbb{N}\setminus \{ 0 \}\).

  2. The name comprehended term originates from the name comprehended expression introduced in [27].

  3. We write ≡ for syntactic identity.

  4. We use the convention that, whenever we write log2(n) in a context requiring a natural number, ⌈log2(n)⌉ is implicitly meant.

References

  1. Baeten, J.C.M., van Glabbeek, R.J.: Merge and termination in process algebra. In: Nori, K.V. (ed.) Proceedings 7th Conference on Foundations of Software Technology and Theoretical Computer Science. Lecture Notes in Computer Science, vol. 287, pp. 153–172. Springer, Berlin (1987)

    Chapter  Google Scholar 

  2. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  3. Baeten, J.C.M., Weijland, W.P.: Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 18. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  4. Bergstra, J.A., Bethke, I., Ponse, A.: Process algebra with combinators. In: Börger, E., Gurevich, Y., Meinke, K. (eds.) CSL’93. Lecture Notes in Computer Science, vol. 832, pp. 36–65. Springer, Berlin (1994)

    Google Scholar 

  5. Bergstra, J.A., Bethke, I., Ponse, A.: Cancellation meadows: a generic basis theorem and some applications. Comput. J. 56(1), 3–14 (2013)

    Article  Google Scholar 

  6. Bergstra, J.A., Hirshfeld, Y., Tucker, J.V.: Meadows and the equational specification of division. Theor. Comput. Sci. 410(12–13), 1261–1271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergstra, J.A., Klop, J.W.: Process algebra for synchronous communication. Inf. Control 60(1–3), 109–137 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergstra, J.A., Middelburg, C.A.: Splitting bisimulations and retrospective conditions. Inf. Comput. 204(7), 1083–1138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bergstra, J.A., Middelburg, C.A.: Meadow enriched ACP process algebras. arXiv:0901.3012v2 [math.RA] (2009)

  10. Bergstra, J.A., Middelburg, C.A.: A process calculus with finitary comprehended terms. arXiv:0903.2914v1 [cs.LO] (2009)

  11. Bergstra, J.A., Middelburg, C.A.: Inversive meadows and divisive meadows. J. Appl. Log. 9(3), 203–220 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bergstra, J.A., Tucker, J.V.: Elementary algebraic specifications of the rational complex numbers. In: Futatsugi, K., et al. (eds.) Goguen Festschrift. Lecture Notes in Computer Science, vol. 4060, pp. 459–475. Springer, Berlin (2006)

    Google Scholar 

  13. Bergstra, J.A., Tucker, J.V.: The rational numbers as an abstract data type. J. ACM 54(2), 7 (2007)

    Article  MathSciNet  Google Scholar 

  14. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  15. Fokkink, W.J.: Introduction to Process Algebra. Texts in Theoretical Computer Science, An EATCS Series. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  16. Groote, J.F., Ponse, A.: Proof theory for μCRL: A language for processes with data. In: Andrews, D.J., Groote, J.F., Middelburg, C.A. (eds.) Semantics of Specification Languages. Workshops in Computing Series, pp. 232–251. Springer, Berlin (1994)

    Chapter  Google Scholar 

  17. Groote, J.F., Ponse, A.: The syntax and semantics of μCRL. In: Ponse, A., Verhoef, C., van Vlijmen, S.F.M. (eds.) Algebra of Communicating Processes 1994. Workshops in Computing Series, pp. 26–62. Springer, Berlin (1995)

    Chapter  Google Scholar 

  18. Hindley, J.R., Seldin, J.P.: Introduction to Combinators and λ-Calculus. Cambridge University Press, Cambridge (1986)

    Google Scholar 

  19. Hodges, W.A.: Model Theory. Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  20. Kosiuczenko, P., Meinke, K.: On the power of higher-order algebraic specification methods. Inf. Comput. 124(1), 85–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koymans, C.P.J., Vrancken, J.L.M.: Extending process algebra with the empty process ϵ. Logic Group Preprint Series 1. Department of Philosophy, Utrecht University, Utrecht (1985)

  22. Luttik, S.P.: Choice quantification in process algebra. PhD thesis, Programming Research Group, University of Amsterdam, Amsterdam (2002)

  23. Mauw, S., Veltink, G.J.: A process specification formalism. Fundam. Inform. 13(2), 85–139 (1990)

    MATH  Google Scholar 

  24. Meinke, K.: Universal algebra in higher types. Theor. Comput. Sci. 100(2), 385–417 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meinke, K.: Proof theory of higher-order equations: conservativity, normal forms and term rewriting. J. Comput. Syst. Sci. 67(1), 127–173 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Meinke, K., Tucker, J.V.: Universal algebra. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. I, pp. 189–411. Oxford University Press, Oxford (1992)

    Google Scholar 

  27. RAISE Language Group: The RAISE Specification Language. Prentice-Hall, Englewood Cliffs (1992)

    Google Scholar 

  28. Sannella, D., Tarlecki, A.: Algebraic preliminaries. In: Astesiano, E., Kreowski, H.J., Krieg-Brückner, B. (eds.) Algebraic Foundations of Systems Specification, pp. 13–30. Springer, Berlin (1999)

    Chapter  Google Scholar 

  29. Yong, S.: An algebraic generalization of Frege structures—binding algebras. Theor. Comput. Sci. 211(1–2), 189–232 (1999)

    MATH  Google Scholar 

  30. Vrancken, J.L.M.: The algebra of communicating processes with empty process. Theor. Comput. Sci. 177(2), 287–328 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 675–788. Elsevier, Amsterdam (1990)

    Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for carefully reading a preliminary version of this paper, for pointing out some slips made in it, and for suggesting improvements of the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Middelburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergstra, J.A., Middelburg, C.A. A Process Calculus with Finitary Comprehended Terms. Theory Comput Syst 53, 645–668 (2013). https://doi.org/10.1007/s00224-013-9468-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9468-x

Keywords

Navigation