Skip to main content
Log in

Simple and Improved Parameterized Algorithms for Multiterminal Cuts

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Given a graph G=(V,E) with n vertices and m edges, and a subset T of k vertices called terminals, the Edge (respectively, Vertex) Multiterminal Cut problem is to find a set of at most l edges (non-terminal vertices), whose removal from G separates each terminal from all the others. These two problems are NP-hard for k≥3 but well-known to be polynomial-time solvable for k=2 by the flow technique. In this paper, based on a notion farthest minimum isolating cut, we design several simple and improved algorithms for Multiterminal Cut. We show that Edge Multiterminal Cut can be solved in O(2l kT(n,m)) time and Vertex Multiterminal Cut can be solved in O(k l T(n,m)) time, where T(n,m)=O(min (n 2/3,m 1/2)m) is the running time of finding a minimum (s,t) cut in an unweighted graph. Furthermore, the running time bounds of our algorithms can be further reduced for small values of k: Edge 3-Terminal Cut can be solved in O(1.415l T(n,m)) time, and Vertex {3,4,5,6}-Terminal Cuts can be solved in O(2.059l T(n,m)), O(2.772l T(n,m)), O(3.349l T(n,m)) and O(3.857l T(n,m)) time respectively. Our results on Multiterminal Cut can also be used to obtain faster algorithms for Multicut: \(O((\min(\sqrt{2k},l)+1)^{2k}2^{l}T(n,m))\) -time algorithm for Edge Multicut and O((2k)k+l/2 T(n,m))-time algorithm for Vertex Multicut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xiao, M.: Algorithms for multiterminal cuts. In: Hirsch, E.A., Razborov, A.A., Semenov, A.L., Slissenko, A. (eds.) CSR. Lecture Notes in Computer Science, vol. 5010, pp. 314–325. Springer, Berlin (2008)

    Google Scholar 

  2. Dahlhaus, E., Johnson, D., Papadimitriou, C., Seymour, P., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994). A preliminary version appeared in STOC 1992

    Article  MATH  MathSciNet  Google Scholar 

  3. Yeh, W.C.: A simple algorithm for the planar multiway cut problem. J. Algorithms 39(1), 68–77 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Costa, M.C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: A survey. Eur. J. Oper. Res. 162(1), 55–69 (2005)

    Article  MATH  Google Scholar 

  5. Călinescu, G., Karloff, H.J., Rabani, Y.: An improved approximation algorithm for multiway cut. J. Comput. Syst. Sci. 60(3), 564–574 (2000). A preliminary version appeared in STOC 1998

    Article  MATH  Google Scholar 

  6. Karger, D.R., Klein, P.N., Stein, C., Thorup, M., Young, N.E.: Rounding algorithms for a geometric embedding relaxation of minimum multiway cut. In: Proceedings of the 31th Annual ACM Symposium on Theory of Computing (STOC 1999), pp. 668–678 (1999)

  7. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs. J. Algorithms 50(1), 49–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Naor, J., Zosin, L.: A 2-approximation algorithm for the directed multiway cut problem. SIAM J. Comput. 31(2), 477–482 (2001). A preliminary version appeared in FOCS 1997

    Article  MATH  MathSciNet  Google Scholar 

  9. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Appl. Math. 85(3), 203–222 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, D.Z., Wu, X.: Efficient algorithms for k-terminal cuts on planar graphs. Algorithmica 38(2), 299–316 (2003)

    Article  Google Scholar 

  11. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3), 394–406 (2006). A preliminary version appeared in IWPEC 2004

    Article  MATH  MathSciNet  Google Scholar 

  12. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum node multiway cut problem. In: Proceedings of the 10th International Workshop on Algorithms and Data Structures (WADS 2007), pp. 495–506. Algorithmica (2007, to appear)

  13. Guillemot, S.: FPT algorithms for path-transversals and cycle-transversals problems in graphs. In: Grohe, M., Niedermeier, R. (eds.) IWPEC. Lecture Notes in Computer Science, vol. 5018, pp. 129–140. Springer, Berlin (2008)

    Google Scholar 

  14. Feige, U., Mahdian, M.: Finding small balanced separators. In: Proceedings of the 38th Annual ACM symposium on Theory of Computing (STOC 2006), pp. 375–384 (2006)

  15. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)

    Google Scholar 

  17. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  18. Călinescu, G., Fernandes, C.G., Reed, B.A.: Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. J. Algorithms 48(2), 333–359 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guo, J., Huffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and exact algorithms for vertex multicut in interval and bounded treewidth graphs. Eur. J. Oper. Res. 186(2), 542–553 (2008). A preliminary version appeared in SOFSEM 2006

    Article  MATH  MathSciNet  Google Scholar 

  20. Ford, J., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  21. Goldschmidt, O., Hochbaum, D.: A polynomial algorithm for the k-cut problem for fixed k. Math. Oper. Res. 19(1), 24–37 (1994). A preliminary version appeared in FOCS 1988

    Article  MATH  MathSciNet  Google Scholar 

  22. Xiao, M.: An improved divide-and-conquer algorithm for finding all minimum k-way cuts. In: Hong, S.H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC. Lecture Notes in Computer Science, vol. 5369, pp. 208–219. Springer, Berlin (2008)

    Google Scholar 

  23. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. J. ACM 45(5), 783–797 (1998). A preliminary version appeared in FOCS 1997

    Article  MATH  MathSciNet  Google Scholar 

  24. Dinic, E.: Algorithm for solution of a problem of maximum flow in networks with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1970)

    Google Scholar 

  25. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). J. Algorithms 54(2), 168–204 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hu, T.C.: Multi-commodity network flows. Oper. Res. 11(3), 344–360 (1963)

    Article  MATH  Google Scholar 

  27. Itai, A.: Two-commodity flow. J. ACM 25(4), 596–611 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  28. Garg, N., Vazirani, V.V., Yannakakis, M.: Approximate max-flow min-(multi)cut theorems and their applications. SIAM J. Comput. 25(2), 235–251 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Xiao.

Additional information

A preliminary version of this paper was presented at the 3rd International Computer Science Symposium in Russia (CSR 2008), and appeared in [1].

The work was supported in part by UESTC Youth Science Funds and Earmarked Research Grant 410206 of the Research Grants Council of Hong Kong SAR. Most of the work was done when the author was a Ph.D. student in Department of Computer Science and Engineering, the Chinese University of Hong Kong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, M. Simple and Improved Parameterized Algorithms for Multiterminal Cuts. Theory Comput Syst 46, 723–736 (2010). https://doi.org/10.1007/s00224-009-9215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9215-5

Keywords

Navigation