Skip to main content
Log in

Competitive Online Multicommodity Routing

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study online multicommodity routing problems in networks, in which commodities have to be routed sequentially. The flow of each commodity can be split on several paths. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes each commodity by minimizing a convex cost function that depends on the previously routed flow. We present a competitive analysis of this algorithm showing that for affine price functions this algorithm is  \(\frac{4K^{2}}{(1+K)^{2}}\) -competitive, where K is the number of commodities. For networks with two nodes and parallel arcs, this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive.

We then investigate a variant in which the demands have to be routed unsplittably. In this case, it is NP-hard to compute the offline optimum. The variant of the greedy algorithm that produces unsplittable flows is \((3+2\sqrt{2})\) -competitive, and we prove a lower bound of 2 for the competitive ratio of any deterministic online algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altman, E., Basar, T., Jimenez, T., Shimkin, N.: Competitive routing in networks with polynomial costs. IEEE Trans. Autom. Control 47, 92–96 (2002)

    Article  MathSciNet  Google Scholar 

  2. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-competitive on-line routing. In: Proc. 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 32–40 (1993)

  3. Awerbuch, B., Azar, Y., Grove, E.F., Kao, M.-Y., Krishnan, P., Vitter, J.S.: Load balancing in the L p norm. In: Proc. 36th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 383–391 (1995)

  4. Awerbuch, B., Azar, Y., Epstein, A.: The price of routing unsplittable flow. In: Proc. of the Thirty-seventh Annual ACM Symposium on Theory of Computing (STOC), pp. 57–66. ACM Press, New York (2005)

    Chapter  Google Scholar 

  5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  6. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  7. Braess, D.: Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1969)

    Article  MathSciNet  Google Scholar 

  8. Caragiannis, I., Flammini, M., Kaklamanis, C., Kanellopoulos, P., Moscardelli, L.: Tight bounds for selfish and greedy load balancing. In: Proc. of the 33rd International Colloquium of Automata, Languages and Programming (ICALP). LNCS, vol. 4051, pp. 311–322. Springer, Berlin (2006)

    Chapter  Google Scholar 

  9. Christodoulou, G., Koutsoupias, E.: The price of anarchy of finite congestion games. In: Proc. of the Thirty-Seventh Annual ACM Symposium on Theory of Computing (STOC), pp. 67–73. ACM Press, New York (2005)

    Chapter  Google Scholar 

  10. Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks. Oper. Res. (2009, in press)

  11. Correa, J.R., Schulz, A.S., Stier Moses, N.E.: Selfish routing in capacitated networks. Math. Oper. Res. 29, 961–976 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dafermos, S.C., Sparrow, F.T.: The traffic assignment problem for a general network. J. Res. Natl. Bur. Stand., Sect. B 73, 91–118 (1969)

    MATH  MathSciNet  Google Scholar 

  13. Farzad, B., Olver, N., Vetta, A.: A priority-based model of routing. Chic. J. Theor. Comput. Sci. Article 1 (2008)

  14. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms: The State of the Art. LNCS, vol. 1442. Springer, Berlin (2008)

    Google Scholar 

  15. Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS weights in a changing world. IEEE J. Sel. Area Commun. 20, 756–767 (2002)

    Article  Google Scholar 

  16. Fortz, B., Thorup, M.: Increasing internet capacity using local search. Comput. Optim. Appl. 29, 13–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  18. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2, 2nd edn. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  19. Harks, T.: Multicommodity routing problems—selfish behavior and online aspects. PhD thesis, TU Berlin (2007)

  20. Harks, T., Heinz, S., Pfetsch, M.E.: Competitive online multicommodity routing. In: Erlebach, T., Kaklamanis, C. (eds.) Proc. 4th International Workshop on Approximation and Online Algorithms (WAOA). LNCS, vol. 4368, pp. 240–252. Springer, Berlin (2006)

    Chapter  Google Scholar 

  21. Harks, T., Heinz, S., Pfetsch, M.E., Vredeveld, T.: Online multicommodity routing with time windows. ZIB Report 07-22, Zuse Institute Berlin (2007)

  22. Olver, N.: The price of anarchy and a priority-based model of routing. Master’s thesis, McGill University, Montréal (2006)

  23. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)

    Article  MATH  Google Scholar 

  24. Roughgarden, T.: Selfish routing with atomic players. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 973–974 (2005)

  25. Roughgarden, T., Tardos, E.: How bad is selfish routing? J. ACM 49, 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  26. Suri, S., Toth, C., Zhou, Y.: Selfish load balancing and atomic congestion games. Algorithmica 47, 79–96 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. of the Institute of Civil Engineers 1, 325–378 (1952)

    Google Scholar 

  28. Yahaya, A., Suda, T.: iREX: Inter-domain QoS automation using economics. In: Proc. of IEEE Consumer Communications and Networking Conference, pp. 96–101 (2006)

  29. Yahaya, A., Harks, T., Suda, T.: iREX: Efficient automation architecture for the deployment of inter-domain QoS policy. Netw. Service Manag. 5, 50–64 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heinz.

Additional information

A preliminary version of this paper appeared in [20].

S. Heinz has been supported by the DFG Research Center Matheon Mathematics for key technologies in Berlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harks, T., Heinz, S. & Pfetsch, M.E. Competitive Online Multicommodity Routing. Theory Comput Syst 45, 533–554 (2009). https://doi.org/10.1007/s00224-009-9187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-009-9187-5

Keywords

Navigation